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Abstract

A microprocessor architecture based on a reconfigurable arithmetic and logic unit (R-
ALU) capable of executing either integer or floating-point operations is presented. Simula-
tion comparisons between a MIPS R1000-like architecture and its counterpart augmented
with a R-ALU show a speed-up ranging from 8% to 14% for integer codes.

Résumé

Une architecture de micro-processeur basée sur une unité arithmétique et logique re-
configurable (R-ALU) capable d’exécuter soit des opérations entiéres, soit des opérations
flottantes est présentée. Des comparaisons de performances & partir de simulation montrent
un gain variant de 8% a 14% sur des codes entiers.

1 Introduction

Current super-scalar microprocessor architectures house several separated functional
units to exploit instruction level parallelism. In these architectures, the mismatch of the
instruction stream mix with the functional unit configuration can result in a significant
factor of performance loss, due to under-use of certain functional units.

In [11], a PowerPC 620 study identified this instruction mismatch as the highest con-
tributor to the loss of IPC (Instruction per Cycle) in the Spec92 benchmark, roughly
ranging from 0.4 to 1.8. Figure 1 repeats this experiment on an architecture similar to the
MIPSR10000 [17] [18] using the spec95 benchmark suite [1] augmented with the k-means
iterative clustering algorithm used in typical image processing and computer vision appli-
cations [15]. The figure shows the loss of IPC due to unavailable functional units. Note
that the IPC loss for integer applications is generally higher than that of floating-point
applications. This indicates that the R10000 lacks integer execution bandwidth much more
than floating-point execution bandwidth.

By providing as many copies of each functional unit as the microprocessor can issue,
one can expect to provide the best IPC by avoiding any stalls due to unavailable units.
However, this approach increases the die area and, more concerning, significantly increases
the bypass network delay. As pointed out by Subarao et al. [16] this delay is directly
proportional to the quadratic value of the number of functional units, and as technology
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Figure 1: IPC loss due to unavailable functional units

scales down, it becomes one of the most important factors limiting the clock frequency.

Thus, if wider instruction issue is a possible approach to reduce the IPC loss, it also
adversely contributes to damage the clock frequency. The solution we investigate is based
on the idea that a unit can be configured on-the-fly as either a floating-point or an integer
unit. In this way, we minimize the number of hardware units and we reduce the IPC loss
by matching the hardware with the instruction stream.

However, this approach raises many questions: what is the penalty (in terms of number
of cycles) for reconfiguring the functional unit and what is the impact on the overall
performance ? How often must the unit be reconfigured 7 Can a reconfigurable unit work at
the same speed as other functional units 7 This paper attempts to answer these questions.

The next section is an analysis of the instruction stream. It aims to determine what
instructions are most interesting for an implementation of the reconfigurable unit. Section
3 details the architecture of the reconfigurable unit. Section 4 presents some performance
provided by simulation. Section 5 concludes the paper.

2 Instruction Stream Analysis

In [7], an attempt to model on-chip processor performance at the instruction-level is
presented. While somewhat limiting in its assumptions, this method provided qualita-
tive conclusions regarding the loss of performance due to instruction and functional unit
mismatch. A major conclusion was significant performance gain was possible using an
architecture that could change its functional unit allocation dynamically. In developing
the hardware logic necessary to implement such a dynamic architecture, it is necessary to
minimize the subset of "important" instructions. "Important" in this context means those
instructions that will have primary influence on the performance of applications of interest.

A processor services instructions. Instructions enter the processor, and are eventually
committed to program-state. But the processor has a limited amount of resources available
on-chip. The functional units themselves are typically hardwired allowing only a finite
number and type of instructions to be executed per cycle resulting in stalls if they are
overwhelmed. Furthermore, stalls resulting from this mismatch and of course memory
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Figure 2: Profiling of the instruction streams: if an ADD instruction is encountered, the
number of other instructions prior to the next occurrence of an ADD is counted. The x-axis
represents the number of times distances of this length occur, and the y-axis occurrence

latency cause instructions to be backed up to the fetch/decode stage. This again results in
stalls on-chip since only a finite number of instructions can be active at any one time due
to limits in registers, queue sizes, etc. For any particular processor, these limitations vary.

We profile the instruction stream as follows: if we encounter an integer-add instruction,
we count the number of other instructions that occur prior to the next occurrence of an
integer-add instruction. We keep track of the number of times distances of this length
occur and plot length on the x-axis and number of occurrences on the y-axis of our graphs.
Figures 2 shows the resulting sets of most frequent instructions for all the codes of interest.

So, contemplating the qualities of a typical processor, we measure the distance between
consecutive instructions of each type. In other words, we directly count the number of
instructions between two identical instruction types. Why is this interesting? The fre-
quencies within the instruction stream itself determine the number of times a certain
distance between a certain type of instruction occurs, thus giving a good representation of
the original application. Furthermore, assuming an architecture uses the same instruction



set and compiler, such a profiling scheme is comparable across architectural improvements
to the physical limitations previously described. Lastly, this approach directly quantifies
the qualities that affect this instruction and functional unit mismatch. Particularly, we
want to be able to focus on instructions that exhibit high frequencies of small distances
between like instructions. Such instructions will inevitably have an adverse effect on per-
formance since static functional unit allocation will result in on-chip stalls. By providing
quantitative comparisons between each instruction type measured, we can directly compare
all instruction types for a particular code. Also, we can highlight the most "important"
instructions for the codes measured and compare the codes themselves. Not surprisingly,
the same instructions tend to be "important" across codes while magnitudes will vary.

Based on some of the principals discussed in [7], we developed a method of quantify-
ing the frequency of instructions with respect to the limit of functional unit allocations.
By augmenting the profiling capabilities of the Simplescalar tool set [13], which simulates
a MIPS R10000like architecture, we are able to measure inter-arrival distances between
instructions. We view the committed instruction sequence as a sequential stream of in-
struction types that are executed by the processor. This stream is the entity we analyze.

We profile the instruction stream as follows: if we encounter an integer-add instruction,
we count the number of other instructions that occur prior to the next occurrence of an
integer-add instruction. We keep track of the number of times distances of this length
occur and plot length on the x-axis and number of occurrences on the y-axis of our graphs.
Figures 2 shows the resulting sets of most frequent instructions for all the codes of interest.

We first utilize this technique to provide a list of the most frequently occurring clusters of
instructions. For floating-point intensive applications, namely Swim, Waveb and Su2cor,
the list of significant instructions is similar to the integer intensive codes Compress95,
ijpeg, li, and k-means. These are the "important" instructions for these particular codes.
A reconfigurable unit that provides support for these types of instructions is likely to
achieve performance gain provided the switching penalty is minimal. These instructions
are listed in each of the figures.

Integer-add operations are quite common among all the codes. This is expected in
integer-intensive codes, but perhaps the magnitude of their presence in floating-point in-
tensive codes is not so intuitive. Nonetheless, the floating-point codes Swim, Wave5, and
Su2cor each show frequency distributions that outweigh their floating-point add counter-
parts significantly. This shows that a reconfigurable unit providing extra bandwidth to
integer-add operations should provide a performance boost. Also, the penalty incurred by
switching from integer-add to floating-point add resulting in cycle delay could be canceled
out by the gain in integer performance afforded by a reconfigurable unit. In other words,
a tradeoff is possible between switching penalty and integer bandwidth performance gain
since the quantity of these integer operations is typically two or three times larger than
the quantity of floating-point add operations.

This discussion provides the motivation behind our choices of including and excluding
functionality for the reconfigurable unit. Particularly, the goal is to provide extended
integer execution bandwidth while maintaining the power provided from reconfiguring as
a floating-point unit.
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Figure 3: Reconfigurable Arithmetic and Logic Unit (R-ALU): The architecture of a
floating-point adder is augmented as follows: extension of the adder from 54 to 64 bits;
insertion of a 64-bit barrel shifter, a few programmable switches, and a logic unit.

3 Reconfigurable ALU

The idea of a functional unit that can serve both integer and floating-point instruction
was proposed by Subromanya and Smith [8] [19]. By augmenting integer execution capa-
bility to floating-point units, they show unit speed-up of integer intensive applications by
off-loading the integer instructions to the floating-point units. Their approach focuses on
compiler transformation of source codes to identify instructions that can be executed by
the augmented floating-point unit. This is done by adding 22 new opcodes to identify the
partition of integer instructions that are to be executed on the floating-point unit.

Our approach is opposite in direction. We detect when integer instructions can be
executed by the reconfigurable unit with minimal hardware cost: steering logic is added to
the dispatch stage to decide to which reservation station instructions are sent. So we do
not sacrificed binary compatibility, and we avoid re-compilation and additional compiler
instruction analysis.



3.1 Architecture

Based on the instruction stream analysis, addition, shift and logical operations are the
most important integer operations. At the same time, floating-point addition represents
the major operation of scientific codes. Thus, the reconfigurable arithmetic and logic unit
(R-ALU) is restricted to these operations and can be reconfigured either as:

e an integer ALU: in this mode, the R-ALU performs 64-bit integer operations:
addition (ADD), subtraction (SUB), shift (SLL, SRL) and usual logic operations
(OR, AND, XOR, ...);

e a floating-point Adder: in this mode, the R-ALU performs double precision stan-
dard 754-floating-point addition (FP-ADD).

The architecture of the R-ALU, as shown figure 3 is a hybrid between an integer and
floating-point architecture. Basically, it follows the architecture of a floating-point adder
but is augmented with the following features:

e extension of the adder from 54 to 64 bits;
e substitution of the 54-bit right shifter by a 64-bit barrel shifter;
e insertion of 4 programmable switches along the data-path;

e addition of a logic unit.

The circles in Figure 3 represent the programmable switches. The R-ALU takes two
operands as input, and has two outputs dedicated respectively to integer and floating-
point results.

When configured as an integer ALU, the swap unit is disabled (switch RS1a). Hence,
the input of the barrel shifter is B1; it is controlled by the instruction decoder through the
switch RS1b. The two inputs of the adder are respectively connected to Al and B1 by the
two switches RS2a and RS2b.

When configured as a floating-point adder, the inputs of the adder come from the first
stage of the pipeline. The barrel shifter is controlled by the operations performed on the
exponents. In that scheme, only the 54 least significant bits of both the adder and the
barrel are used.

3.2 Timing consideration

The first assertion we make is that, whatever the technology used, the 64-bit addition is
the critical path. When using Carry Lookahead technique, an addition can be performed
in time O(log n), that is a time, in our case, approximatively equal to 6 x § where d is the
switching time of an elementary gate.

In the R-ALU, the critical path is the carry propagation of the 64-bit adder, plus the
propagation time through the programmable switches RS2x on the input operands. The
insertion of only one extra gate on this critical path has an immediate effect: it decreases
the frequency by more than 15%.

Actually, the delay of the programmable switches is less than an elementary gate delay if
we consider that the connection has been set previously, that is during the reconfiguration
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Figure 4: Switching penalty: (A) from integer to floating-point; (B) from floating-point to
integer

step. Furthermore, delays induced by the programmable switches can be compensated by
resizing a few MOS transistors. In [6] we show that the data-path delay is not affected if
switches are carefully driven by appropriated drivers. The only effect will be a very small
increase of the power consumption.

3.3 Reconfiguration issue

As the R-ALU may be asked to switch frequently between integer or floating-point ALU,
we must analyze the reconfiguration penalty cost and its impact on the overall performance.
Actually, due to the 3-stage pipeline when configured as a floating-point unit, and the 1-
stage pipeline when configurated as an integer ALU, the time for switching from integer
to floating-point, or floating-point to integer, is not constant: it depends on the last or the
next operation to perform.

We present two extreme situations. The first switches from integer to floating-point and
requires no extra reconfiguration cycles. The second switches from floating-point to integer
and requires two extra reconfiguration cycles. An exhaustive analysis can be found in [6].

1. Switching from Integer to Floating-point (fig. 4-A): The last integer opera-
tion to perform before switching is an ADD/SUB or a LOGICAL operation (not a shift
operation). Since these operations do not use hardware required by the first pipeline
stage of a floating-point addition, this stage can be reconfigured when executing an
ADD or a LOGICAL operation. If such integer operation is executed during cycle ¢, the
reconfiguration process can start at the begining of cycle i. This situation does
not require an extra cycle for reconfiguring the R-ALU.

2. Switching from Floating-point to Integer (fig. 4-B): The first integer opera-
tion to perform after switching is an ADD/SUB operation. In this situation, the adder
is the bottleneck. If the instruction FP-ADD is executed at cycle i, then the adder is
used at cycle ¢ + 1, allowing the second stage to be reconfigured at cycle ¢ + 2, and
instruction ADD to start at cycle 7 + 3. In this situation, two cycles are needed
for switching from floating-point to integer.



The following table summarizes all the switching situations:

inst i inst i+1 | inst i+2 | cycles
int to float | LOG or ADD | FP-ADD | FP-ADD 0
SHIFT FP-ADD | FP-ADD 1
float to int || FP-ADD LOG not ADD 0
FP-ADD LOG ADD 1
FP-ADD SHIFT INT 1
FP-ADD ADD INT 2

The columns inst i, inst i4+1 and inst i+2 represent the instruction flow. The R-ALU is
switched between instruction i and instruction i+1. The last column indicates the number
of cycles required for switching the R-ALU.

The average number of cycles dedicated for reconfiguring the R-ALU depends both on
the instruction distribution and the strategy to determine when to switch from FP-to-
INT or INT-to-FP. If we assume that most of the integer instructions are ADD/SUB
instructions, then the average cycle to reconfigure the R-ALU is equal to one (no cycle for
the ADD/FP-ADD switch, two cycles for the FP-ADD/ADD switch).

4 Performance Analysis

Performance analysis for evaluating the R-ALU benefit has been performed on the
MIPSR10000 architecture. Basically, This architecture (Figure 5-A) comprises 2 integer
ALUs, 2 floating-point units and one address generation unit embedded in the Load/Store
unit (LSU). Both ALUs are capable of performing basic operations. In addition ALU1 per-
forms branch and shift operations, and ALU2 multiplication and division operations. One
floating-point unit (FPU1) is dedicated to floating-point addition, the other one (FPU2)
performs multiplication, division and square-root operations. There are 3 16-entry reser-
vation stations issuing instructions in an out-of-order manner.

Figure 5-B shows the modification we made to the MIPS R10000 architecture for insert-
ing the R-ALU. The floating-point unit (FP1) is substituted by the R-ALU and a new
8-entry reservation unit is added. The FPU reservation station is reduced to 8 entries
because now it does not need to store FP-ADD operation. Analysis of instruction is done
at the dispatch stage right after the fetched instruction are decoded for operands. Then
register renaming is performed in parallel with a steering logic that selects a subset of
instruction to be executed by the R-ALU. Finally, the selected instructions are dispatched
to the new reservation unit. If the R-ALU detects that the new instruction stream is of
different type compared to the one it is currently serving, it switches accordingly. The
steering logic is performed in parallel with register renaming to avoid any effect on the
clock frequency.

Simulations have been performed on the same set of applications introduced in section 2,
again with the Simplescalar Toolset simulator [13]. However, a modified simulator version
has been done to insert the R-ALU unit, its reservation station, the steering logic, and to
take into account the latency cost due to the reconfiguration of the R-ALU.

Figure 6 shows the IPC simulation results for the MIPSR10000 base architecture (first
bar) and for the modified architecture (second bar). A third architecture (third bar) has
also been simulated for comparison purpose: it adds to the base architecture an extra
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integer ALU that also calculates addresses for the memory instruction. It is provided for
comparison to assess how effective the R-ALU is to a less-scalable brute-force approach of
adding an extra ALU.

First, for all schemes, the IPC for floating-point applications does not change. By
comparing the base architecture with the additional ALU scheme we know that floating-
point operations do not need additional integer execution or address generation bandwidth.
Consequently, adding a R-ALU which adds integer capability will have little impact on
these codes. The IPC is either increased or decreased by a very small amount. This
is due to the fact that the R-ALU does not add any additional floating-point execution
bandwidth. The R-ALU is only beneficial when there is no floating-point addition, for
example, during initialization phase. This extra bandwidth gives the swim and the su2cor
applications a little bit of IPC improvement. However, for the waveb application, the
additional IPC is offset by the cost of the reconfiguration. The reconfiguration frequency
for the waveb application is the highest, causing high total cost penalty.

The table below shows the reconfiguration frequency for all the applications. For floating-
point applications, the reconfiguration frequency translates directly into IPC gain: the
more frequent the reconfiguration occurs, the lower the IPC gain.

Application swim | waved | su2cor | compress ijpeg li k-means
Average

nb. instructions 40.5 16.5 21.1 370 7219576 | 7065704 325
per reconfiguration

The reconfiguration frequency for the ijpeg and li applications is very low because the
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Figure 6: IPC gain: base MIPS R10000 architecture (first bar), modified R-ALU architec-
ture (second bar), extra integer ALU architecture (third bar).

code contains no floating-point addition. The k-means and compress applications, however,
respectively have 0.7% and 0.5% floating-point addition instructions, leading to a higher
reconfiguration frequency compared to ijpeg and li.

If we now consider integer applications, improvement ranges from 8.3% for the compress
application to 14.4% for the k-means application. The steering of integer and memory
instructions explains this performance improvement: the R-ALU provides more integer
execution bandwidth most of the time. Note that the memory instructions that are sent
to the R-ALU are also sent to the address reservation station because the R-ALU only
performs address generation and passes the results to the corresponding instruction in the
address reservation station which actually holds the memory instruction until the actual
load or store operations have been completed and committed. Hence, memory instructions
enter the R-ALU at the dispatch stage, and leave the R-ALU at the issue stage.

5 Conclusion

We have presented an architecture that exploits extra bandwidth provided by a recon-
figurable ALU having its own reservation station. The performance gain is practically
equivalent to adding an additional ALU into a MIPS R10000-like architecture. We have
shown from simulation that this architecture can speed-up integer application ranging from
8.3% to 14.3%. For floating-point applications, the architecture has no significant impact
on the performance. Because we add a separate 8-entry reservation station while reducing
the floating-point reservation station to 8 entries, the only extra hardware cost is due to ex-
tra integer register ports, steering logic, and integer extension capability of a floating-point
adder. We estimate the cost to be less than 1% of the total die area of the micro-processor.

Actually, with the steadily increasing integration density, minimizing the hardware (in
terms of number of transistors) may not be the principal objective. The clock speed is a
more critical aspect. Adding an extra integer ALU somehow leads to a simpler architecture
which, as we have shown, gives similar IPC improvement. However, a great advantage of



our solution is that we do not extend the bypass network which will be a more and more
critical section of future micro-processors as the MOS technology will continue to scale
down.

Although R-ALU is applicable to superscalar microprocessors, it is most applicable to
some future architectures. These include Processor In Memory (PIM), trace processors,
and VLIW architectures. In terms of performance, R-ALU always helps when the in-
struction fetch bandwidth of a processor exceeds its instruction execution bandwidth, as
demonstrated in [5]. However, for the future architectures mentioned, R-ALU provides
more than just performance boost.

In PIM systems [3], there are many processors in a memory chip. DRAM manufacturers
are concerned on the die area occupied by logic compared to DRAM banks. Thus, mini-
mizing logic area is of the most importance. The use of R-ALU can help reducing the area
occupied by each processor while retaining performance.

In trace processor (e.g. Hal Sparc64 [2|), instructions are bound to ports and units at
trace construction stages. Mismatch between trace and functional units requires trace to
be broken. R-ALU units provide more flexibility in trace construction, thus denser traces.
Furthermore, since data dependences are analyzed at trace construction, integer instruc-
tions that are to be sent to the R-ALU should use floating-point registers only, eliminating
extra wiring between the two register files. Similar benefits of flexible instruction bundling
without extra wiring between register files can be obtained for a VLIW architecture.
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