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Abstract. This paper presents a methodology for mapping linear pro-
cessor arrays onto FPGA components. By taking advantage of regularity
and locality properties of these structures, a placement is pre-defined, al-
lowing vendor tools to skip this phase and produce fast and optimized
routing.

1 Introduction

In many compute intensive applications such as image or signal processing, time
is mostly spent in executing loops. Speeding-up these applications leads to hard-
ware implementations which directly benefit from the inherent loop parallelism.
The resulting architecture is a regular array, often a systolic array, made of sim-
ple processing elements dedicated to efficiently performing the body of the inner
loops [1]. The structure can either be uni or bi-dimensional, but in the following
we will restrict to linear arrays only.

Implementing such nested loops onto FPGA components presents many ad-
vantages. First, the regular nature of FPGA component matches perfectly with
the architecture we focus on: replication of identical regularly interconnected pro-
cessing elements. Second, the best uses of FPGA boards (from a performance
point of view) have been demonstrated on many compute intensive applications,
as illustrated by the numerous applications implemented on the PAM boards [2].
Third, new advanced microprocessor architectures tend to incorporate reconfig-
urable resources in their data-path. Parallelizing loops on these specific areas is
a very attractive way to efficiently exploit reconfigurable computing. Globally,
there are three steps as described in [3]:

— Parallelization: This step consists in deriving regular array architectures
from loop specifications or equivalent formal description such as systems
of affine recurrence equations. The ALPHA language, developed at IRISA
allows the programmer to explore transformations needed for systematic
derivation of regular arrays and for automatic parallelization [4].

— Partitioning: Since the available reconfigurable resources may not support
the entire array, transformation of the architecture is required : splitting
the array into sub-arrays or clustering groups of processing elements. The
automating of this task is still ongoing research and is not yet fully resolved.



— Physical Mapping: This last step maps the architecture on the reconfig-
urable support. From a RTL description (provided by the previous stages),
one must find the best mapping both in term of speed performance and
area occupation. This is actually a very time-consuming step which tends to
become longer as the FPGA components grow in complexity.

The work presented in this paper deals with the last stage. It focuses on
reducing the place-and-route process involved in the physical mapping task by
taking advantage of the regular nature of the array we want to map.

2 Regular Place-and-Route Foundation

Place-and-Route steps are very time consuming, especially with the larger FPGA
components. This is mainly due to the algorithmic techniques (such as simulated
annealing) used for finding reasonable solutions. The advantage of these tech-
niques are their generality: they provide relatively good solutions whatever the
structure of the designs. In our case, as we try to shift towards software compi-
lation requirement, the major drawback is definitely the computation time.
One way to limit this time is to provide a pre-defined placement and, of
course, the best as possible to optimize the routing phase. The methodology we
developed for mapping regular arrays onto FPGA components is mainly based
on this idea. Our thesis is that placing an array of processing elements according
to its regular and locality properties brings three major improvements over usual
place-and-route techniques: (1) the placement time is drastically reduced; (2) the
routing time is optimized; (3) the frequency is increased. Our placement strategy
for taking advantages of these improvements is based on the following rules:

1. Signals which belong to a same processor have their sources placed in a same
restricted area. This implies a reduction of the placement, the routing and
the delay time.

2. Identical processors have identical placement: the placement focuses only on
one processing element and is replicated over the FPGA component. The
time is thus independent of the number of processing elements.

3. Neighboring processing elements are close to each other. Again,the expected
benefits are a reduction of the placement, the routing ant he delay time.

A few experiments have been carried out to validate this thesis. Basically,
we compare the time to place-and-route a design with and without placement
directives. Several linear array designs have been tested using the ppPR Xilinx
router tool for the XC4000 family. We observe that the placement phase is
more time consuming than the routing phase, and shortening this step results
in a significant speed-up (3 on average), even if the routing phase, in some cases
increases. We also observe that it does not lead to degraded clock frequency.



3 Regular Place-and-Route Strategy

Figure 1 details the place-and-route environment for mapping regular arrays
onto FPGA components. The input and output of FRAP are written in a same
structural description, respectively without and with placement directives. The
regular placement is performed with the FRAP tool and acts in three steps:

1. All possible shapes for a processing element are generated by combining all
shapes of its sub-components.

2. A full snake placement of the linear array is determined using the processing
element shapes previously computed.

3. The final placement of the processing elements are performed according to
their shapes.

From the output of FRAP an EDIF file is generated and input to the vendor
place-and-route tools. Since the placement is fully specified, the computation
time is reduced to roughly the time for routing the FPGA component.

Steps 1 and 3 deal with processing element placement. We consider those
elements rather small, that is a few operators essentially coming from a library,
and that finding a good placement is a fast and non critical process.

In step 2, the problem is to place a linear array on a bi-dimensional FPGA
structure. The only way to keep two neighbor processing elements close to each
other is to implement a snake-like arrangement of the array. The determination
of the snake-like arrangement proceeds in two phases [5]: (1) divide the FPGA
area in sub-areas that we call convenient areas, and (2) for each convenient area,
place a maximum number of processing element in a snake-like fashion.

The second phase is solved using the knapsack metaphor [6] allowing the use
of different kind of shapes for the processing elements.

Figure 2 is an illustrating example of the result of the FRAP placement.
The full FPGA area has been partitioned into three convenient areas. In the
convenient area 1, an horizontal snake is made of two different segments, segment,
of shape A and segment of shape B. The convenient area 2 is also an horizontal
snake made only with a processing element of shape A. The convenient area 3 is
a vertical snake made of processing elements of shape C. The overall placement
requires of determining placements for the 3 different shapes of the processing
element.

4 Conclusion and Future Works

We have presented a strategy for placing linear regular arrays onto FPGA com-
ponents. This strategy uses the knapsack technique and provides fast placement
compared to the vendor tools. The speed-up comes mainly from the regular na-
ture of the architecture we focus on, that is, linear arrays of identical processors
on which a two-level placement is achieved: (1) a cell-level placement and (2) an
array-level placement.
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Even if we can drastically shorten the placement step, the overall place-and-
route process remains too long to be included into a compiling framework. It may
takes a few tens of minutes up to a few hours to achieved a suitable routing,
that is definitely too long for programmers who are used to a faster compiling
process. Consequently, the next step is to shorten the routing phase.

As for placement, this step can benefit from regular architecture by duplicat-
ing routing pattern of the processor cells. Unfortunately, unlike for placement,
this strategy cannot be implemented through a few “routing” directives. It re-
quires a detailed knowledge of the routing resources of the target FPGA as well
as direct access to the programming of the routing switches.
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