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ABSTRACT

The “pixel purity index” (PPI) algorithm proposed by Boardman, et al.! identifies potential endmember pixels in
multispectral imagery. The algorithm generates a large number of “skewers” (unit vectors in random directions), and
then computes the dot product of each skewer with each pixel. The PPI is incremented for those pixels associated
with the extreme values of the dot products. A small number of pixels (a subset of those with the largest PPI
values) are selected as “pure” and the rest of the pixels in the image are expressed as linear mixtures of these pure
endmembers. This provides a convenient and physically-motivated decomposition of the image in terms of a relatively
few components.

We report on a variant of the PPI algorithm in which blocks of B skewers are considered at a time. From the
computation of B dot products, one can produce a much larger set of “derived” dot products that are associated
with skewers that are linear combinations of the original B skewers. Since the derived dot products involve only
scalar operations, instead of full vector dot products, they can be very cheaply computed.

We will also discuss a hardware implementation on a field programmable gate array (FPGA) processor both of
the original PPI algorithm and of the block-skewer approach. We will furthermore discuss the use of fast PPI as a
front-end to more sophisticated algorithms for selecting the actual endmembers.
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1. INTRODUCTION

A number of algorithms have been proposed over the last decade for finding so-called endmembers in multispectral
data.l™'! These algorithms are all based on the notion that a scene contains relatively few distinct materials and
that much of the pixel-to-pixel variation in a multispectral image cube can be explained by the assumption that the
pixels are “mixtures” of these distinct “pure” materials. The endmembers are the spectral signatures of these pure
materials.

The “spectral unmixing” problem actually involves two steps. The first step is to find the endmember signatures
(either from a library of known spectra or directly from the image), and the second is to express the individual pixels
as (usually linear) combinations of these endmembers. The coefficients associated with each of the endmembers
are identified with the “abundances” of the endmember materials in the given pixel; the coefficients are generally
assumed to be proportional to the areal extent of each of the endmember materials in the pixel.

The emphasis of our work is on the computation involved in the first step, the identification of endmembers,
directly from an image.

Like principal components, endmembers provide a basis set in terms of which the rest of the data can be described.
But unlike principal components, the endmembers are expected to provide a more “physical” description of the data.
There are two reasons for this expectation: One is that the endmembers are taken from the data themselves, and
the other is that the linear combinations are restricted to combinations in which the coefficients are non-negative
and sum to one. The mixed pixels can be literally interpreted as having X-percent of material A, and Y-percent of
material B.
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2. ORIGINAL PPI ALGORITHM

The importance of convex geometry as a paradigm for understanding the endmember problem was emphasized by
Boardman et al.'™3 early in this decade. If a multispectral image has D spectral channels, then each pixel can be
identified with a point in a D-dimensional space.

Boardman’s “pixel purity index” (PPI) algorithm! represents a specific attempt to exploit this paradigm, by
locating data points which are on the vertices of the convex hull of this D-dimensional scatterplot. The problem
of identifying the convex hull from a discrete set of data is a classic one in computational geometry, but the PPI
algorithm provides a number of advantages over these classical algorithms. First, as we will describe below, it is
relatively simple to implement, and it parallelizes quite naturally. Furthermore, it produces a relative measure for
each vertex which distinguishes those near “corners” of the data with a higher-valued index: this is important because
the corners are where the endmembers are expected to be. Although it is an approximate algorithm (it cannot be
guaranteed to identify every vertex except in an asymptotic limit), it produces approximate answers right away, and
the approximation gets better as the algorithm progresses. Finally, the penalty for working in a high-dimensional
space increases roughly linearly (rather than exponentially) with the nominal dimension D of the space.

The algorithm proceeds by generating a large number N of random D-dimensional “skewers” through the D-
dimensional data. For each skewer, every data point is projected onto the skewer, and the position along the skewer is
is noted. The data points which correspond to extrema (or near extrema) in the direction of the skewer are identified,
and placed on a list. As more skewers are generated, this list grows; the number of times a given pixel is placed on
this list is also tallied. The pixels with the highest tallies are considered the most pure, and a pixel’s count provides
its “pixel purity index”.

The PPI algorithm, by itself, does not identify a final list of endmembers. Taking the D + 1 “most pure” pixels,
for instance, often leads to degenerate sets in which some of the endmembers are nearly identical. The pixel purity
index was conceived not as a solution, but as a a guide; the author? proposed comparing the pure pixels with
target spectra from a library, and successively projecting the data to lower dimensional spaces as endmembers were
identified. Nonetheless, as Fig. 2 shows, the PPI algorithm can identify a small set of candidate endmembers from a
large image. To illustrate the use of PPI and its variants, we use a 614 x512-pixel 224-channel hyperspectral AVIRIS
image!2; we also use an image which is derived from the AVIRIS image, but only has ten channels, corresponding to
bands available on the MTI satellite.'®

Since PPI identifies more than just the D + 1 points that make up the optimal simplex, it can potentially provide
useful information to other algorithms (such as Archetypal Analysis* or N-FINDR!!) to accelerate their convergence.
This puts the PPI algorithm in the role of image pre-processor, and argues further in favor of its choice for hardware
acceleration.

3. BLOCKS OF SKEWERS

The original PPI algorithm generates a large number of “skewers” (unit vectors in random directions), and then
computes the dot product of each skewer with each data point. This can be computationally expensive, especially
in high dimensions, and requires that a large number of dot products be evaluated.

Consider a block of B skewers, ky € RP with b= 1, ... B, and consider the B scalar dot products d; € R obtained
from each of these skewers applied to one of the data points. The central observation in the blocks-of-skewers method
is that for every skewer which is a linear combination of these B skewers, the “derived” dot product of that skewer
with the data is a linear combination of the original dot products dy. The reason this is useful is that derived dot
products can be much cheaper to compute than original dot products. One price paid for this convenience is that
the virtual skewers that produce the derived dot products are in the same B-dimensional subspace as the original B
skewers. However, with appropriate choice of B and with a reasonable strategy for choosing the linear combinations,
a considerable computational advantage can be obtained.

Given a set of B skewers, k; € RP, for i = 1,..., B; consider the (potentially much larger) set of virtual skewers
given by the linear combinations k' = a1k; + ... + apkpg. There is in principle an infinite choice of coefficients
a;, 1 = 1,..., B, but we will consider various restrictions below. But even for arbitrary a; € R, already there is a

computational advantage that can be seen.
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Figure 1. The PPI algorithm works by projecting points in the data set onto random skewers. For each skewer,
two extreme points are identified, and their pixel purity index is incremented. In the figure above, the circled points
are identified as candidate endmembers in the full space because their projection onto one or both of the skewers is
extremal.
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Figure 2. (a) Plot of the cumulative number of endmembers found as a function of the number of skewers in a
run of PPI on a ten-channel multispectral data set. After the run of N = 1000 skewers, a total of 154 candidate
endmembers were produced. (b) Sorting the candidate endmembers according to their pixel purity index shows
the range of pixel purity indices exhibited by the candidate endmembers: a few have very large values, some have
intermediate values, and fully a third of them have an index of unity. Those points with higher indices are presumed
to be closer to the “corners” of the data in the ten-dimensional space.
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Figure 3. If p1,po, ps,. .. are the original dot products, computed from a block of skewers applied to a single data
point, then the derived dot products are linear combinations of these: aips+asps+asps+---. Appropriately ordering
the derived dot product calculations can lead to considerably reduced computation at each step. (a) For the simple
discrete case in which a; € {—1,0,1}, each of the derived dot products associated with the O(3%) virtual skewers
are obtained by a single addition or subtraction to a term that has been computed previously. (b) For the corners
of the hypercube case, with a; € {—1,0,1}, an arrangement like a graycode leads to a set of computation in which
each term is equal to the previous term plus or minus twice one of the original dot products.

For each of the D-dimensional data points x,, the B dot products k; - x,, for ¢ = 1,..., B. each require D
multiply-accumulate operations. But the derived dot product

k' -xp, =a1ki -Xn+ ...+ aBks - Xn (1)

can be expressed as a linear combination of these B dot products, and can be computed with only B multiply-
accumulates. As long as B < D, these derived dot products are cheaper to compute than the original dot products;
on the other hand, the derived dot products are with vectors that are in the B-dimensional subspace spanned by k;
fori=1,...,B.

3.1. Discrete Linear Combinations

If, rather than permit arbitrary coefficients, we restrict them to be small discrete integers, i.e., a; € {—n,—(n —
1),...,-1,0,1,...,n — 1,n}, then multiplication by a; can be implemented as a small number of additions. In this
case, then there are (2n + 1)? of these virtual skewers, though the useful count is ((2n + 1)® — 1)/2, neglecting the
k' = 0 skewer and recognizing that the overall sign of the skewer doesn’t matter (since we consider both maximum
and minimum values of the dot products).

Here, even n = 1 provides an O(3%) gain, though not all of this exponential gain can be realized in practice. The
calculation of each derived dot product nominally requires O(B) additions, though by computing the derived dot
products in a well-chosen order, this number can be reduced to O(1); see Fig. 3(a). The price per dot product can
be greatly reduced, but the dot products must still be applied to every data point. And for each skewer, virtual or
otherwise, one must keep track of maximum and minimum dot product, as the algorithm is looped over the entire
data set.

The speedup that is available from these virtual skewers is considerable. For a high dimensional space, it is the
multiply-accumulates in the original dot products that will dominate the computation, and since we get (3% —1)/2
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Figure 4. (a) Speedup available from the block-skewer method increases rapidly with block size B, but saturates
at a speedup that scales with the dimension D of the data. The circles represent the speedup attained when the
block-skewer method was applied to find endmembers of a 224-channel AVIRIS image; the squares are the same
calculation, but applied to a 10-channel simulated MTI image. In both cases, discrete linear combinations with
a; € {-1,0,1} were used. (b) A price is paid for this speedup. Shown here are the cumulative endmembers found
as a function of number of skewers. The darker line corresponds to the standard (slow) B = 1 algorithm, and the
performance generally decreases with increasing B.

virtual skewers out of our B original skewers, the theoretical speedup is
3B -1

S, = . 2

V= 2)

However, if we account for the time required for an addition or subtraction (taad/sub), Which is needed for every

virtual skewer, the time required to maintain a record of the minimum and maximum dot product so far (tm;, /max),

then we obtain a formula for speedup

So
S=—2 3
1 + SoT/D ( )
where D is the number of spectral channels, and 7 is the ratio
= tadd/sub + tmin/max ) (4)
tmult/aco

For large D, this looks like the idealized speedup S, until it saturates at Siop = 1/(DT).

3.2. Corners of the hypercube
If we further restrict consideration to virtual skewers k' = 2?:1 aik;, with a; € {—1,1}, then there are 2B-1 derived
dot products for every B original dot products. This is not as large as the O(3%) gain seen in the previous section,
but the gain is still exponential.

The advantage comes in comparing the angular separation of nearby skewers. If k; and ko are two skewers, then

k! - k!
0 — 1 2
080 = [T o] )

defines the angle between them. The closest pairs of skewers will be those whose a; values differ only at a single 4.
For those pairs, assuming the original B skewers are orthogonal, the angle between them will be given by
2

=-1-=
cosf B (6)

By contrast the closest pair of skewers when a; is permitted to include 0 as well as {—1,1} is given by

B-1 1
cos@-mmal—ﬁ. (7)
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Figure 5. (a) Speedup for two different block-skewer methods; the first (circles) is the discrete linear combinations
with a; € {—1,0,1} were used, which is the same as shown in Fig. 4(a). The second is the alternate corners method,
with a; € {—1,1}, and only every other corner used. The speedup of the alternate corners method does not increases
as rapidly with block size B, but it also does not saturate for as small a value of B. (b) The real advantage of the
alternate corners method, compared to all discrete linear combinations with a; € {—1,0,1}, is seen in the plot of
cumulative endmembers found as a function of number of skewers. Comparing this figure to Fig. 4(b) shows that
more endmember candidates are found.

There are more virtual skewers per block when zero-valued coefficients are permitted, but those skewers are also
closer to each other.

Restricting ourselves to corners of the hypercube, we get fewer virtual skewers per block (O(2%) instead of O(3%)),
but those skewers are more widely separated. For the same number of virtual skewers, we can use a larger block size
B, and therefore cover a higher dimensional subspace of the full D-dimensional sphere with a single block.

The first derived dot product requires B — 1 additions (but with B <« D, this is a lot cheaper than the D
multiply-accumulate’s required for a real dot product); furthermore, by organizing the order of computation of the
derived skewers like a “graycode,” it is possible to compute each of the remaining derived dot products with only a
single addition; see Fig. 3(b).

3.3. Alternate corners

It is clear from the previous section that a goal in choosing directions for virtual skewers is to try and cover as much
of the surface of the D dimensional unit sphere as possible. The alternate corners strategy considers a subset of the
2B coefficient vectors a € {—1,1}® which still “covers” the B dimensional space, but not as finely as the full set.
One measure of the granularity of this coverage is the characteristic distance between coefficent vectors and their
nearest neighbors in the B-dimensional coefficient vector space. For binary-valued coefficients, this is effectively a
Hamming distance; and when the Hamming distance between a pair of a’s is k, then the angle between the derived

skewers is 6 where ok
0=1-—— 8
cos 5 8)
The case k = 1 produces all the corners of the hypercube; k = 2 produces only alternate corners, of which there
are 2871 in a B-dimensional cube. For even-sized blocks B =0 (mod 2), the corners on opposite ends of the cube
are alternate corners; if we compute both min and max of every derived dot product, then the alternate corners will
be taken care of, and we will effectively get 25~2 derived dot products for each block of B skewers. (For odd-sized
blocks B =1 (mod 2), there is no advantage to taking alternate corners since computing both min and max of

every dot product is effectively the same as using all corners.)

The advantage of having virtual skewers farther apart is illustrated in Fig. 5. The speedup increases less rapidly
with B, but for a given speedup, more endmembers are identified.

In general, the problem of identifying a maximal set of vectors in a B-dimensional binary space such that every
pair of vectors has a Hamming distance at least as large as a specified k is a classic problem in communication theory.



One would like to produce “codes” for which few-bit errors and be detected and/or corrected, and to do so requires
sets of binary vectors with large pairwise Hamming distances. A “perfect” code satisfies

2B
S D2 (B 91
7= 2
but for for most values of B and k, this is an upper bound. In fact, for many values of B and k, the actual size of
the maximal code is unknown. Nonetheless, algorithms exist for finding “good” codes, given values of B and k. For

k = 3, Hamming found perfect codes whenever B is of the form 2™ — 1; the number of code vectors in this case is
given by 22" ~1=™_and so the gain is given by

A(B, k) = 9)

22m—1—m 2B

virtual skewers per actual skewer. (See Roman'* for an accessible introduction to error-correction and error-detection
coding.)

3.4. Orthogonally aligned skewers

In previous sections we have spoken of randomly chosen vectors k; € RP; however, we can avoid even computing
the original B dot products by choosing the vectors k appropriately. In particular, we consider choosing the k’s from
among the D axes of the original data. There are

(%)= mw-on m

ways to choose a block of B random othogonal skewers from the D orthogonal components, so for even moderately
large D and B, we are not giving up a lot of randomness by limiting ourselves to orthogonal vectors.

3.5. Principal Components

An advantage of the PPI algorithm over some alternatives is that it works reasonably well in high-dimensional spaces;
if the effective dimension of a data set is D', but the data are nominally expressed as D channels, then the only
penalty for working in the nominal space instead of the reduced space is D/D’. For some algorithms, this penalty is
exponential in D.

Nonetheless, there is still an advantage in working in a reduced space if one is available. And principal components
analysis provides a relatively convenient way of projecting the data to a lower dimensional space while still maintaining
most of the variability in the data. The principal components algorithm is not cheap, however, and the matrix
factorization involved is very floating-point intensive, which makes a full-hardware implementation less attractive.

The first (and most expensive) step in a principal components analysis is the computation of the covariance
matrix. This requires O(N D?) scalar multiply-accumulate operations, although shortcuts are feasable here (e.g.,
use a sampling of N’ < N points to estimate the covariance matrix; or use the covariance matrix from a previous
experiment). The matrix factorization, usually a singular value decomposition, does not have the O(N) pre-factor,
but it does scale as O(D?), with a large (of order ten) coefficient. Having determined the D’ largest principal
components, one can rotate the data with O(ND') dot products, each in the nominal D-dimensional space, for a
total effort of O(NDD') multiply-accumulates.

The standard PPI algorithm, with K skewers, requires O(N.D K) multiply-accumulates in the nominal space, and
O(ND'K) in the lower-dimensional space.

With K > D, the cost of rotating the data is small compared to the cost of the PPI, so the gain in going to
principal components is the factor D'/D. This is only linear in the dimension, but for hyperspectral data with
hundreds of channels, and projections to a few tens of principal components, gains of an order of magnitude are
available.

A possibly greater gain, in combining principal components with the fast PPI algorithm, lies in the projection of
the D-dimensional space to a lower B-dimensional space.



4. HARDWARE ACCELERATION

The pixel purity algorithm is a good candidate for acceleration because it is readily parallelizable (the skewer
calculations are done independently) and the core calculation is a simple dot product. Hardware acceleration of a
dot product is by itself useful, as it is the “inner loop” for many remote sensing and multispectral image processing
tasks.!®

This includes the N-FINDR!! algorithm, which attempts to inscribe the largest-volume simplex in the data cloud.
Here, the quality of a given data point as the potential replacement for a given fiducial vertex can be expressed as
a dot product of that data point with the “skewer” that is perpendicular to the sub-simplex that does not contain
the fiducial vertex. The computation of the skewer is somwhat involved, but it scales only with the dimension of the
simplex, and not with the size of the data set. So for large data sets, the dominant computation is the dot product
of very particular skewers with the full dataset.

We have designed an implementation of the standard PPI algorithm on reconfigurable hardware.'® The basic
architecture is shown in Fig. 6. It is composed of a matrix of dot-product operators. Each dot-product is fed serially
with the D components of the pixels and the skewers; this requires D cycles, but in that time a dot product is
computed for each operator in the matrix.

The results of the dot-product are stored into registers (shaded boxes) and shifted to the MinMax units. These
units compute the minimum and the maximum of the dot-product and keep track of which pixel produced the
extreme values. The results of the MinMax units are shifted to the host processor through a fifo.

In order to get the best performance, the minimum and maximum operations are performed in parallel with the
dot-product computation: as soon as a dot-product phase is accomplished, the results are stored in the shift registers,
and another phase begins immediately. During the next dot-product phase computation, the previous dot-product
values are bit-serially shifted to the MinMax units. Hence, there is a complete overlap between the dot-product and
the minimum/maximum computations.

One issue that arises in the hardware implementation is the precision of skewer coefficients. If the skewers are
limited to a few bits of precision per coordinate direction, they can still provide an effective “cover” of the D-
dimensional sphere of possible directions, but the dot product computation is faster (and more to the point, since
it takes up less real estate on the reconfigurable chip, is more parallelizable). In our implementation, we use three
bits (allowing the coefficient to vary from -3 to 3), but Fig. 7 shows the effect of reduced precision in the plot of
cumulative endmember candidates. Reduced precision does indeed reduce the number of candidates, but the effect
is small, which gives us confidence in this design choice.

We have started to investigate the hardware acceleration of the block-skewer approach, but this is currently a
work in progress.

5. PPI AS A PRE-PROCESSOR

Since PPI produces candidate endmembers, we can use these as input to more sophisticated algorithms which can
then be used to identify the best choice of endmembers. To illustrate the idea, we used PPI to produce a stream
of endmember candidates, and then used these pixels as input to our implementation of the NFINDR!! algorithm.
NFINDR attempts to inscribe the largest volume simplex in the data and the effort to do so scales linearly with
the data. (It is to the credit of the NFINDR authors that it is so fast — there is a combinatorially large number of
possible simplices one might inscribe in a given data set.) Although NFINDR is quite efficient at processing data,
some more sophisticated approaches, such as the archetypes of Cutler and Brieman,* require processing that scales
very rapidly with the number of data points. If a fast PPI can be used to rapidly identify candidate endmembers,
then these more sophisticated approaches can use that to speed up their efforts to identify the actual endmembers.
In Fig. 8, we supply NFINDR with endmember candidates from PPI applied to ten-dimensional simulated MTT data,
and we find that it is able to rapidly identify the largest volume simplex from this data. As a comparison, we supply
NFINDR with random subsets of the pixels from the image, and again it finds the largest volume simplices that
these subsets can support. What is most evident in this comparison is that the simplex volume computed with only
a few of the PPI candidate endmembers is much larger than the volume computed with random subsets of much
greater size.
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Figure 6. Basic architecture of the hardware implementation of the Pixel Purity Index algorithm. A matrix of
dot-product operators (DP) operate in parallel, taking the components of the skewers on the horizontal axis and the
components of the pixels on the vertical axis. The results are fed into MinMax units which identify the extreme dot

products.
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Figure 7. Cumulative plot of candidate endmembers as a function of the number of skewers is shown for different
discretizations of the skewer coefficients. The darker line at the top is the standard PPI, and is the same as Fig. 2(a);
the lighter lines correspond to skewer coefficients discretized to 2, 3, and 4 bits of precision. For example, the 3-bits
case only permits the seven integer coefficients that vary from -3 to 3, inclusive. The 2-bits case is the lower curve,
and in general, the more bits of precision that are used, the more candidate endmembers are found, but beyond two
bits, the effect is not substantial.
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Figure 8. This plot shows the results of two separate experiments. In both experiments a number of pixels was
supplied to NFINDR, and NFINDR produced the volume of the largest simplex supported by the pixels. The
diamonds correspond to the first 150 candidate endmembers identified by PPI. The circles correspond to large but
random subsets of the pixels in the image. This figure illustrates the effectiveness of PPI as a preprocessor.
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