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Abstract

This document describes a parallel architecture for computing the k-means clustering algorithm
based on a pixel data stream. The implementation targets FPGA accelerator boards connected to
a host processor through a standard I/O interface. Speed-up for hyperspectral image processing is
estimated on a systolic processor array based implementation.

1 Introduction

The basic principle of the image clustering process is to take an original image and to represent the
same image using only a small number of pixel values. The k-means clustering algorithm [1], [2]
performs this task by attempting to minimize a squared error cost function over a set of NB_CLASS
cluster centers. The k-means algorithm works as follows:

e Assign pixels to NB_CLASS classes and Compute centers initialization

e Loop (N) k-means iteration

— For each pixel:

*x C = class of the pixel
* Determine the class number K whose centers have the smallest distance from the
pixel
x If (C!'=K)
- Move pixel to class K
- Recompute the centers of the classes K and C

The number of iterations (IN) can be either fixed in advance or undetermined. In that case, the
process stops when no more pixels, or less than a threshold value, move.



Actually, the k-means algorithm includes several variants ranging from a continuously class center
updating (as mentioned above) to a general updating (once after a complete loop iteration). But
more often the class centers updated, faster the convergence.

2 Algorithm profiling

As we want to implement the k-means algorithm (or part of this algorithm) into hardware, it is
first worth to study its behavior to determine where are the costly sections. The following code is
a C transcription of the k-means iteration:

1 while (pixel_move !=0) {

2 pixel_move = 0;

3 for (i=0; i<NB_PIXELS; i=i+B) {

4 for (b=0; b<B; b++) {

5 min = MAX_INT;

6 /* compute a distance between the pixel and all the classes *x/
7 for (k=0; k<NB_CLASS; k++) {

8 if (N_CENTER[k]'=0) { cntr_dist += 1;

9 dist = 0;

10 for (d=0; d<NB_BANDS; d++)

11 dist = dist + ABS (PIXEL[i+b][d] - CENTER[k][d]);

12 /* get the minimum distance and the associated class # */
13 if (x<min) { min = dist; idx[b] = k; }

14 }

15 }

16 }

17 for (k=0; k<NB_CLASS; k++) change[k] = false;

18 for (b=0; b<B; b++) {

19 if (CLASS[i+b]!=idx[b]) { cntr_acc += 2;

20 pixel_move ++;

21 k = CLASS[i+b]; N_CENTER[k]--; change[k] = true;

22 for (d=0; d<NB_BANDS; d++)

23 ACC[k][d] = ACCI[k][d] - PIXEL[i+b][d];

24 k = idx[b]; CLASS[i+b] = k; N_CENTER[k]++; changel[k] = true;
25 for (d=0; d<NB_BANDS; d++)

26 ACC[k][d] = ACC[k][d] + PIXEL[i+b][d];

27 CLASS[i+b] = idx[b];

28 }

29 }

30 for (k=0; k<NB_CLASS; k++)

31 /* recompute centers if necessary */

32 if (N_CENTER[k]!=0 && change[k]==true) { cntr_center += 1;
33 for (d=0; d<NB_BANDS; d++)

34 CENTER[k] [d] = ACC[k] [d]/N_CENTER [k];

35 }

36 }

37 %



A loop iteration scans all the pixels. For each pixel we check if it belongs to its class. If not, the
pixel is moved to another class and the two centers corresponding to both the new and the old
classes are updated. The number of pixels into a class is memorized as well as the sum accumulation
necessary for recomputing the class centers. Here, the class centers are periodically updated every
block of B pixels.

One may also note that the distance function has been simplified to use the Manhattan instead of
the Euclidean metric [1]: this uses the absolute value of a difference instead of the squared difference.
Today, this is more suitable for hardware implementation, but tomorrow FPGA component will
include specific hardware in such a way that multiplication will be a cheap hardware operation [8].

The computation can roughly be split into three parts: the distance calculation between a pixel
and a class center, the accumulator update and the center update. The three counters cntr_dist,
cntr_acc, and cntr_center (respectively inside the if statement at lines 8, 19 and 32) spy these
activities: cntr_dist is incremented by one each time a new distance is calculated, cntr_acc is
incremented by two each time the accumulators are changed and cntr_center is incremented by
one each time a new center is updated.

We run this algorithm on a 224-band hyperspectral image of 240x256 pixels using different param-
eters such as the number of classes and the updating frequency of the class centers. The results
are summarized in the following tables:

B represents the update frequency of the class centers. In other words, the class centers are updated
after processing B pixels. The k-means process ends when there are no more pixels to move.

#class 4 8 16 32 64
dist 2 703 360 | 6 389 760 | 36 372 480 | 81 511 680 | 136 417 920
acc 111 410 134 808 296 016 198 428 245 436
center 5235 7 708 34 041 37 422 64 335
B = 240
##class 4 8 16 32 64
dist 2 703 360 | 6 389 760 | 52 101 120 | 78 658 560 | 156 698 880
acc 111 342 134 598 213 624 213 138 247 122
center 13 998 18 635 63 277 63 314 98 739
B =60
F#class 4 8 16 32 64
dist 2 703 360 | 6 389 760 | 26 542 080 | 106 997 760 | 149 735 040
acc 111 338 134 578 182 538 242 434 270 690
center 31 803 39 579 70 746 117 470 148 804
B =12




From these results, it is clear that the most consuming code section is the distance computation
between the pixels and the class centers, even if the class center is updated very often. The accu-
mulator and the class center updating represent only a small percentage of the total computation
time, especially for a partition into a large number of classes. For example, in the case of a 32 class
partitioning, the distance computation represents more than 99.6% of the computation time.

The architecture we describe in the next section focus only on parallelizing the most consuming
part, that is the distance computation between the pixels and the class centers.

3 Parallel Architecture

The basic idea is to flow a pixel stream (from left to right) through a linear array of processors.
The number of processors is equal to the number of classes. A processor k computes a distance
between the class k and the current flowing pixel. The result is taken at the rightmost end of the
array and corresponds to the index class for which a minimum distance has been found.

pixel stream S o
Cinfinity | L 2 3 4 S |
0 - — index
M M M M M

Each processor has a small memory storing the class center (a vector of NB_BAND values), and
performs the following computation:

while (1) {

dist = 0;

for (d=0; d<NB_BAND; d++) {
read (pixel);
dist = dist + ABS(pixel - class_center[d]);
write (pixel);

}

read (min, index);

if (dist < min) {
min = dist; index = #proc;

}

write (min, index);

This parallel structure does not compute any class centers, it allows only to determine what is
the class number of a pixel. This information is available at the rightmost end of the array each
time a pixel (or more precisely, its last vector element) comes out of the array. Consequently, we



suppose this array integrated in a digital system composed of a host processor capable of handling
such operations. In other words, the host has the charge of flushing the pixel stream to the array
and getting the results indicating the class number of each pixel. It is thus its responsibility to
determine the moves of the pixels and to recalculate the class center accordingly.

At this point, we still haven’t addressed the problem of updating the class centers: we suppose
the processor memories loaded with the class centers before sending a block of B pixels through
the array. The updated class center mechanism we have added benefits from the identical data
structure between the pixels and the class centers: they are both a vector of NB_BAND data. The
idea is to have a heterogeneous data stream composed of pixels and class centers. When a processor
read a pixel it performs a distance computation (as described above), and when it read a class
center it updates its memory. The program of a processor is modified as follows:

while (1) {
dist = 0;
for (d=0; d<NB_BAND; d++) {
read (flag, data, min, index, class);
if (flag == pixel) {
dist = dist + ABS(data - class_center[d]);
if (dist < min) {
dist = min; index = #proc#;

}
else if (index == class) class_center[d] = data;
write (flag, data, dist, index, class);

}
}

The variable data represents either a pixel or a class center depending of the value of the vari-
able flag. If it is a pixel value, a distance is computed. If it is a class center value, then the
class_center array is updated only if the class variable is equal to the processor index. The
comparison between the dist and the min variables is now moved inside the for loop for "regu-
larity” purpose, especially for inter processor communication: each iteration of the loop requires
reading and writing exactly four data, independently of the nature of the stream elements (pixels
or class centers).

In that scheme, a typical scenario is that first the host initializes the class_center array (processor
memories) by sending NB_CLASS center class vectors. Then it sends a few pixels (a sub-stream of
B pixels), read the indexes and determines if some pixels have moved. If so, it recalculates the
new class centers and updates the processor memory by just sending the class centers which have
changed. The size of the pixel block (B) is independent of the implementation and may vary from
iteration to iteration.

4 Speed-up Evaluation

This section tries to evaluate the gain of connecting the linear structure described in the previous
section. We suppose a reconfigurable platform connected to a host computer through a standard
I/0O interface (such as PCI). The main loop performed by the host computer becomes:



01 while (pixel_move !=0) {

02 pixel_move = 0;

03 for (i=0; i<NB_PIXELS; i=i+B) {

04 write_block_pixel (PIXEL[i],B);

05 for (k=0; k<NB_CLASS; k++) changel[k] = false;
06 for (b=0; b<B; b++) {

07 read (idx);

08 if (CLASS[i+b]!'=idx) {

09 pixel_move ++;

10 k = CLASS[i+b]; N_CENTER[k]--; change[k] = true;
11 for (d=0; d<NB_BANDS; d++)

12 ACC[k][d] = ACC[k][d] - PIXEL[i+b][d];
13 k = idx; CLASS[i+b] = k; N_CENTER[k]++; changel[k] = true;
14 for (d=0; d<NB_BANDS; d++)

15 ACC[k][d] = ACC[k][d] + PIXEL[i+b][d];
16 }

17 }

18 for (k=0; k<NB_CLASS; k++) {

19 if (N_CENTER[k]!=0 && change[k]==true) {
20 for (d=0; Ad<NB_BANDS; d++)

21 CENTER[k] [d] = ACC[k] [d]/N_CENTER[k];
22 write_center (CENTER[k]);

23 }

24 T

25 }

26}

The loop computing the distance is replaced by a procedure sending the pixels to the array (pro-
cedure write_block_pixel, line 04). Also, the processor memories are updated by sending new class
centers each time they are modified (procedure write_center, line 22).

In section 2 we have shown that most of the time is spent in computing the distance between the
pixels and the class centers. Assuming that the linear array can sustain the data rate provided by
the host, the speed-up is mainly determined by the ratio 7'1/7'2 where 7'1 is the computation time
on a sequential processor and T2 is the computation time using the parallel array for computing
the distances. More precisely:

T1=Tdseq+Ta+Tc

T2 = Tdpar + Ta + Tc+ Tcypdate

Tdseq = cntr_dist x NB_.BANDS x NB.CLASS x (1/MEDS)
Tdpar = cntr_dist x NB_BANDS x (1/TR)

Tcypdate = cntr_center x NB_BANDS x 1/TR

e Tdseq is the time for computing the distance sequentially.
e Tdpar is the time for computing the distance on the parallel array.

® T'cypdate is the time for updating the class center on the array.



Ta is time for updating the accumulators.

Tc is the time for recomputing the class centers.

Tac=Ta+ Tec.

MEDS is a unit standing for Millions of Elementary Distances per Second.

TR is the I/O transfer rate between the host and the array expressed in Mbytes per second.

Let a = T'ac/Tdseq and Sd = T'dseq/Tdpar. « represents the ratio between the accumulator plus
the center class update time and the distance computation time. Sd represents the speed-up of the
distance computation. The overall speed-up is thus equal to:

S =Sd/(1+a x Sd)

The details of calculation can be found in annex 1. Tests on a 450 MHz PC give a M EDS of 9.7
(9.7 millions of elementary distances are computed every second).

5 Systolic Architecture

Among all the possibilities for implementing the array, we describe a systolic processor array.
Figure 1 details the architecture of one processor. All the data and control signals are propagated
synchronously. There are two control signals:

e WrMem: when active, the memory is loaded with a new value if the input IdxIn is equal to
#proc.

e LdAcc: when active, reset the accumulator to the value output by the |A — B| module.
The other input/output represent:

e Class: class number.
e Addr: memory address.

e Pixel/Center: depending of the value of WrMem the data flowing through this channel is
a pixel (WrMem=0) or a class center (WrMem=1).

e Idx: index (valid only when WrMem=0).
e Min: minimum distance computed (valid only when WrMem=0).
For efficiency the systolic array cannot be directly connected to the host processor. A front process

must be added for generating the control signals and the initialization values. This process has to
perform the following task:
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Figure 1: architecture of the systolic processor
while (1) {

ReadVector (flag,vector);
if (flag<0) {

send (0,1,0,0,vector[0],0,MAX_INT);

for (d=1; d<NB_BANDS; d++) send (0,0,0,d,vector[d],0,MAX_INT);
}

else
for (d=0; d<NB_BANDS; d++) send (1,0,flag,d,vector[d],0,MAX_INT);

The infinite loop read a vector of NB_.BANDS data which are either pixels or class centers. The
vector is flagged with the flag variable: a null or positive value indicates a class center update.
The procedure send as the following arguments:

send (WrMem, LdAcc, Class, Addr, Pixel/Center, Idx, Min)



On the same way, the rightmost systolic processor needs to be interfaced to the host processor by
a process filtering the results:

d=0;

while (1) {
read (WrMem, Idx);
if ((WrMem==0) && (d==NB_BANDS-1)) send2host (Idx);
d = (d+1)%NB_BANDS;

}

The complete architecture is thus composed of a systolic array of NB_BANDS processors intercon-
nected to the host as follows:

| |

| |
Front ' 1 2 AN i Filetering
Process . — Il : Process

: == ;

: systolicarray !

______________________________ |

HOST

6 FPGA Implementation

The VHDL code source of a processor can be found in annex 2. The body includes 5 components
(mem224x8, AinfB16, Equ8, Sub16, Acc16) designed with the Xilinx LogiBLOX tool. The synthesis
process with Synplify and the place-and-route process with the Xilinx Alliance Series tools fit a
processor (including its memory) into 120 CLBs for the XC4000 family [6]. The resulting clock
frequency is equal to 20 MHz when a FPGA component with a few processors representing 80% of
the available resources.

From this results we can estimate the speed-up for different FPGA boards using the speed-up
expression given in section 4. In the following, we take a M EDS value (Millions of Elementary
Distances per Second) of 10. This corresponds roughly to the power computation capability of a
500 MHz processor. We also consider a pixel element encoded on 8 bits.

The « coefficient (o = T'ac/T'dseq) which estimates the ratio between the time spent for updating
both the accumulators and the class centers, and the time for computing the distances is deduced
from the tables given in section 2. We assume that the cost of the operation perform on the most
inner loops (line 11, 23, 26, 34) are equivalent. Actually, this cost depends greatly of the accesses
of the variables PIXEL, CENTER and ACC. The integer operations represents a small part of the
computation time of the loops. Hence, a can be estimated from the counters values as the ratio of:



cntr_dist

cntr_acc + cntr_center

Taking the worst case (B=12) for a number of classes ranging from 4 to 64 gives:

# of class | 4 8 16 32 64
«a 0.05 | 0.03 | 0.01 | 0.003 | 0.002

As the transfer rate between the host and the FPGA board is an important element, we take into
consideration two situations:

e DMA transfer: In this case, the data transfer rate is not a limited factor. The speed-up is
dictated by the clock frequency of the processor array. With a frequency of X MHz, the
distance computation speed-up (Sd) is simplified to 0.1 x X X NB_CLASS.

e Memory Map transfer: This transfer mode is generally very slow and the speed-up is dictated
by the host/board transfer rate. With a MEDS of 10, the distance computation speed-up
(Sd) is equal to NB_CLASS xT'R/10.

Wildforce board

The Wildforce board [4] is composed of 5 Xilinx XC4036EX (36 x 36 CLBs) processing elements.
An implementation can fit 8 systolic processors into each processing element PE1 to PE4 the front
and filtering processes into PEQ. This leads to an array of 32 processors. In the Memory Map
transfer mode, the communication between the host and the board is very slow. A data bandwidth
of 2-3 Mbytes/sec seems to be a maximum.

#class 4 8 |16 | 32
MemMap Speed-up | 0.7 | 1.5 | 3.1 | 6.3
DMA speed-up 5.7 1 11 | 24 | 53

SLAAC-1 board

The SLAAC-1 board [10] has twice the resources of the Wildforce board: up to 64 processors can
then be implemented. Experiments carried out by the SLAAC-1 board designers give a transfer
rate of 5 Mbytes/sec in the Memory Map mode. Currently, no DMA engine is available.

#class 4 8 |16 | 32| 64
MemMap Speed-up | 1.8 | 3.6 | 7.4 | 15 | 30
DMA speed-up 57| 11 | 24 | 53 | 101

10



Wildcard board

The Wildcard board houses a single Virtex 300 component [7]. This represents an array of 32 x 48
CLBs. Knowing that a Virtex CLB is approximatively equivalent to two XC4000 CLBs, a processor
can be fitted into 60 Virtex CLBs. An array of approximately 20 processors (75% of CLBs used)
can fit into this board running at a double frequency (40 MHz) compared to the Xilinx 4K family.
The measured Memory Map transfer rate is 2.6 Mbytes/sec and a DMA write as a bandwidth of
40 Mbytes/sec.

#class 4| 8 | 16
MemMap Speed-up |1 | 2 | 4
DMA speed-up 9116 39

Wildstar board

The Wildstar board [5] interconnects three Virtex 1000 components (64 x 96 CLBs). Each compo-
nent can fit easily 80 processors (75% of CLBs used), leading to a total of 240 processors.

#class 41 8 |16 | 32| 64 | 128 | 256
MemMap Speed-up | - | - - - - - -
DMA speed-up 9116 |39 |92 169 | 253 | 336

SLAAC-1V board

The SLAAC-1V board [10] includes also three Virtex 1000 processing elements with the restriction
that processing element X0 is only 50% available for user implementation. The Memory Map

transfer rate is equal to 5 Mbytes/sec and the DMA engine provide a bandwidth of approximately
40 Mbytes/sec.

#class 4 8 |16 | 32| 64 | 128 | 192
MemMap Speed-up | 1.8 | 3.6 | 7.4 | 15| 30 | 60 | 113
DMA speed-up 9 | 16 | 39 | 92 | 169 | 253 | 302

Spyder board

The Spyder board [11] houses a single Virtex 800 component (56 x 84 CLBs) in which a 64 processor
array can fit (75% of CLBs used). Tests carried out at IRISA, France, indicate an average Memory
Map transfer of 12 Mbytes/sec and a DMA transfer rate of more than 40 M Bytes/sec.

#class 41 8 |16 | 32 | 64
MemMap Speed-up |3 | 7 | 74|16 | 34
DMA speed-up 9116 | 39 |92 | 169

11



7 Conclusion
The speed-up provided by the pixel stream architecture is function of two important parameters:

e the number of classes clustering the image.

e the transfer rate between the host and the FPGA board.

But with the current available FPGA boards such as the SLAAC-1V, the Wildstar or the Spyder
boards which house Virtex components and offer (reasonable) DMA transfer, a large number of
classes can be processed concurrently without to be slow-down by the data stream rate. Actually,
there is a good balance between the DMA transfer rate (around 30-40 Mbytes/second) and the
clock frequency we can expect to achieved (30-40 MHz).

The architecture is independent of the size of the image and requires no inboard memory. However,
the size of the processor memories must be adjusted according to the number of spectral bands
of the hyperspectral image. The resources used by the memory represents actually a large part
compared to the total resources of a processor. Tailoring the size of the memory to the application
will have an immediate effect of the architecture performance. For instance, resizing the memory
to handle 128-bands leads to a multiply the maximum speed-up by a factor 1.5.

The architecture requires no global control, except the clock in the case of a synchronous design
such as the systolic array we have presented. The advantage of propagating the control signal
along the array is that the clock frequency becomes independent of the size of the array, providing
a scalable architecture. In addition, and this may be as important as anything else, the design is
greatly simplified: it is mainly reduced to optimized a fairly simple processor.
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ANNEX 1: Speed-up Calculation

The speed-up is given by the ration 7'1/7°2
T1 =Tdseq+ Tac
T2 = Tdpar + Tac + Tcypdate
Tdseq = entr_dist x NB_LBANDS x NB.CLASS x (1/MEDS)
Tdpar = cntr_dist x NB_BANDS x (1/TR)
Tcypdate = cnitr_center x NB_LBANDS x 1/TR

Let o = T'ac/Tdseq and Sd = T'dseq/Tdpar
From experiment results (page 3) we have cntreenter << cntrgist.

The ratio T1/T2 can be simplified as follows:

Tl ~ Tdseq+axTdseq _ 1+«
T2 Tdseq/Sd+ ax Tdseq 1/Sd+ «

Considering o << 1

T1 Sd
Speed—up—S—ﬁ—il_l_ade

Sd is the optimal speed-up provided by the array on the distance computation.

a is a corrector coefficient which takes into account all the other computations, especially the
update of the class centers.
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ANNEX 2: VHDL code of a systolic processor

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity kmean_process is

port

(
Clk : in  std_logic;
NumProc : in std_logic_vector (7 downto 0);
WrMemIn : in  std_logic;
WrMemOut : out std_logic;
AddrIn : in  std_logic_vector (7 downto 0);
AddrOut : out std_logic_vector (7 downto 0);
PixelIn : in  std_logic_vector (7 downto 0);
ClassOut : out std_logic_vector (7 downto 0);
ClassIn : in  std_logic_vector (7 downto 0);
PixelOut : out std_logic_vector (7 downto 0);
LdAccIn : in  std_logic;
LdAccOut : out std_logic;
MinIn : in  std_logic_vector (15 downto 0);
MinOut : out std_logic_vector (15 downto 0);
IdxIn : in  std_logic_vector (7 downto 0);
Idx0ut : out std_logic_vector (7 downto 0)

)3

end kmean_process;
architecture struct of kmean_process is

component mem224x8

PORT(
A : IN std_logic_vector (7 DOWNTO 0);
DI : IN std_logic_vector (7 DOWNTO O);

WR_EN : IN std_logic;

WR_CLK : IN std_logic;

DO : OUT std_logic_vector (7 DOWNTO 0));
end component;

component AinfB16

PORT(
A : IN std_logic_vector (15 DOWNTO O0);
B : IN std_logic_vector(15 DOWNTO 0);

A_LT_B : OUT std_logic);
end component;
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component Equ8

PORT (
A : IN std_logic_vector(7 DOWNTO 0);
B : IN std_logic_vector (7 DOWNTO O);

A_EQ_B : OUT std_logic);
end component;

component Subl6

PORT (
A : IN std_logic_vector(15 DOWNTO 0);
B : IN std_logic_vector(15 DOWNTO O);

SUM : OUT std_logic_vector(15 DOWNTO 0));
end component;

component Accl6
PORT(
ADD_SUB : IN std_logic;

B : IN std_logic_vector (15 DOWNTO 0);

LOAD : IN std_logic;

CLK_EN : IN std_logic;

CLOCK : IN std_logic;

Q_0ouT : OUT std_logic_vector (15 DOWNTO 0));
end component;
signal Pixel : std_logic_vector(15 DOWNTO 0);
signal MemOut : std_logic_vector(7 DOWNTO O);
signal DPixel : std_logic_vector(15 DOWNTO 0);
signal Center : std_logic_vector(15 DOWNTO O);
signal Abb : std_logic_vector(15 DOWNTO 0);
signal Acc : std_logic_vector(15 DOWNTO 0);
signal Sub : std_logic_vector(15 DOWNTO 0);
signal Inf16 : std_logic;
signal equidx : std_logic;
signal WriteMem : std_logic;
signal Enable : std_logic := ’1°;
signal addsub : std_logic;
begin

PixelOut <= DPixel(7 downto 0);
Pixel (7 downto 0) <= PixellIn;
Pixel (15 downto 8) <= "00000000";
Center (15 downto 8) <= "00000000";
WriteMem <= WrMemIn and equidx;
addsub <= not Abb(15);
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process (Sub, LdAccIn)
begin
for i in 0 to 15 loop
Abb(i) <= Sub(i) xor (LdAccIn and Sub(15));
end loop;
end process;

process (Clk)
begin
if rising_edge(Clk) then
Center (7 downto 0) <= MemOut;
DPixel <= Pixel;
AddrOut <= AddrIn;

LdAccOut
WrMemQOut <=
ClassOut <=

<= LdAccIn;

WrMemIn;
ClassIn;

if Infi16 = ’1°
then MinQut <= MinIn; idx0Out <= IdxIn;
else MinQut <= Acc; Idx0ut <= NumProc;
end if;
end if;
end process;

memOp0 : mem224x8 port map
(A => AddriIn,

DI => Pixelln,

WR_EN => WriteMem,

WR_CLK => Clk,

DO => MemQOut) ;

subOp0 : Subl6 port map
(A => DPixel,
B => Center,
SUM => sub);

accOp0 : Accl6 port map
(ADD_SUB => addsub,

B => Abb,

LOAD => LdAccIn,
CLK_EN => Enable,
CLOCK => Clk,

Q_0UT => Acc);
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infOpO0 : AinfB16 port map
(A => MinIn,

B => Acc,

A_LT_B => inf16);

equlp0 : Equ8 port map
(A => ClassIn,

B => NumProc,

A_EQ_B => equidx);

end struct;
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