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Abstract

One major bottleneck of a superscalar processor is the mismatch of instruction stream
mix with functional unit configuration. The resulting “unavailable functional unit” stalls
can be a significant factor of performance loss. Recently, mutable functional units (MFUs)
- functional units that can serve both floating-point and integer operations - have been
proposed to reduce this type of stall. The benefit to our implementation of an MFU is
increased integer execution bandwidth without increased die area or power consumption.
In this paper, we show that the ILP gain, as well as the speedup, provided by the MFU
increases in many architecture modifications expected in the future. The speedup ranges
from 8% to 22%. We conclude that MFUs show promise in improving the performance of
future architectures.

1 Introduction

Superscalar microprocessor architecture attempts to exploit instruction level parallelism (ILP,
measured as instructions per cycle or IPC) by fetching and issuing multiple instructions every
cycle. Since the issued instructions may be of any combination of integer, memory, and floating
point instructions, the functional unit configuration has to take that into account. Providing
as many copies of each functional unit type as the issue width will provide the best IPC by
avoiding any stalls due to unavailable functional units. However, this approach increases the
die area occupied by the functional units and increases the complexity of the bypass network?,
increases the complexity of superscalar architecture because it contains long wires. Subbarao
et al. [16] pointed out that the bypass delay in a bypass network (data bypass logic) grows
quadratically with issue width, which also means that it is proportional to the quadratic value
of the number of functional units?. The paper concluded that for an 8-way superscalar processor
implemented on a 0.18 pum process, the bypass network is the most significant factor that limits
clock frequency. Thus, reducing the number of functional units is desirable from a hardware
point of view.

'The bypass network is a network connecting functional units. It is used to forward result values of completing
instructions to dependent instructions, bypassing the register files. Thus, instead of wasting cycles by checking the
register files for availability of operands and reading from them, dependent instructions are issued to functional
units and use the bypassed values.

ZSubbarao et al. uses an assumption that the number of functional units is proportional to the issue width,
hence the bypass delay and the number of bypass paths grow quadratically with issue width.



Hardware complexity performance trade-offs are contemplated by architecture designers
when determining functional unit configurations that have acceptable complexity without sac-
rificing too much performance. However, this compromise results in instruction and functional
unit mismatch that can be a significant factor in decreased instructions per cycle (IPC) [12, 11].
To solve this problem, recently floating-point functional units that have integer execution ca-
pability have been proposed [15, 9, 11]. The units are called mutable functional units in [11]
because the units can mutate (with mutation latency) to serve floating-point or integer instruc-
tions. The studies differ in the approach taken to exploit the extra integer execution bandwidth
provided by MFUs. In [9], the authors use a compiler approach and add to the instruction set
architecture. In [11], our approach is transparent to the ISA and requires no compiler modi-
fications. Instead, we use a minimal hardware modification to implement a mutable functional
unit. Both studies show that the MFU usage boosts the IPC of integer applications significantly
while neither discusses whether a particular architecture modification increases or decreases the
benefit of using MFUs.

Thus, we focus on likely architectural modifications and what effect, if any, they have on
performance when combined with an MFU design. We present two significant contributions in
this context:

e We present a study of the achieved IPC gain over the base non-MFU architecture on various
future architecture modifications. Results of this study provide indications of increasing
IPC gain provided by MFU on future architectures.

o We present an explanation of why the IPC gain increases on the architecture modifications
that we simulate. We also discuss applicability of MFU to real near-future architectures.

The rest of this paper is organized as follows: Section 2 provides the implementation of an
MFU and an architecture that exploits it. Section Section 3 presents the architecture modifica-
tions we choose to simulate and their simulation parameters. Section 4 presents and discusses
the simulation results. Section 5 explains why the IPC gain increases on the architecture mod-
ifications and discusses other future architecture modifications. Finally, Section 6 summarizes
the study.

2 Architectures for a Mutable Functional Unit

We begin this section by describing briefly the design of a mutable functional unit (MFU),
including the mutation penalty. Next we present an architecture scheme that exploits the usage
of MFU with minimal hardware modification.

2.1 Mutable Functional Unit

Our goal is to utilize the hardware that exists in floating-point units by augmenting them
for integer execution capability. We base our design of MFU on the R10000’s floating-point
adder [5]. The floating-point adder has three pipeline stages: align, add, and pack, as illustrated
in Figure 1. The first pipeline stage (align) contains a right shifter, the second (add) contains a
53-bit adder, and the third (pack) contains a left shifter. So the adder, with a few extensions,
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Figure 1: Double precision IEEE 754 floating point adder



has the hardware necessary to perform shift and 64-bit add operations. The idea of a mutable
functional unit is to use the hardware in floating-point units to perform integer execution.

Thus, based on profiling results in [13], we designed the MFU to be able to execute inte-
ger addition, shift, and logic operations, plus address generation for memory operations. The
floating-point adder hardware already provides 53-bit shift capabilities (mantissa). The adder,
however, needs to be enlarged to 64 bits. It does not have a logic unit, thus we need to augment
it. Finally, a few switches need to be added to change the data path for each of the operations
that need to be performed in the MFU. The resulting hardware design revealed that an MFU
roughly has the same number of gates as a floating-point adder plus a single logic unit. The
details of the hardware design and timing can be found in [5].

One important aspect that affects the performance of the MFU is its mutation penalties,
which are shown in Table 1. Mutation penalties are stall cycles due to the MFU changing its
current functionality such as the ability to execute integer operations to another functionality
such as floating-point operations. The penalty is paid when there are floating-point instructions
in the pipeline just prior to a mutation that must be drained from the pipeline stages that the
integer operations require. Although in general the mutation penalty is not high, an architectural
scheme needs to avoid excessive mutations.

Table 1: MFU mutation penalty
Instruction | Next Instruction | Instruction After Next | Mutation Penalty ‘

logic fp-add fp-add 0
shift fp-add fp-add 1
fp-add shift not int-add 0
fp-add logic int-add 1
fp-add shift all int 1
fp-add int-add all int 2

2.2 Architecture to Exploit MFU

Varying the pipeline stages in which the mutation analysis and the actual mutation are per-
formed, we have studied several alternative architectures [11]. We will briefly mention a promis-
ing architecture, which we call RS-MFU.

We chose to use the MIPS R10000 architecture as the basis of our study (shown in 2a).
The functional units consist of 2 integer ALUs. One is capable of performing basic operations
(add/sub, logic) plus branch and shift operations, and the other is capable of performing basic
plus integer multiplication and division. There is one Address Generation Unit (AGU) which
is embedded in the Load Store Unit (LSU). Finally, there are 2 floating-point units (FPUs).
FPU1 is capable of performing addition, and FPU2 is capable of performing multiplication,
division, and square root operations. There are three reservation stations: integer, floating
point, and memory/address reservation stations. Each reservation station has 16 entries, and
issues instructions in an out-of-order manner to the respective functional units.

A major modification needed to create RS-MFU scheme is to replace the floating-point
adder (FPU1) with an MFU, which is able to perform floating point addition, integer addition,
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logic, shift operations, and address generation®. Analysis of instructions is performed at the

dispatch stage right after fetched instructions are decoded for operands. After decoding the
operands, register renaming is performed in parallel with a steering logic that selects a subset
of instructions to be executed by the MFU. The selected instructions are dispatched to a new
reservation station (MFU RS) that will issue the instructions only to the MFU, as illustrated in
Figure 2b. If the MFU detects that the new instruction has a different type compared to the one
it is serving, it performs the mutation and executes that instruction. The steering is performed
in parallel with register renaming to avoid any effect on clock frequency.

Since we replace FPU1 (floating-point adder) with an MFU, all floating-point additions have
to be performed in the MFU. Floating- point applications have a lot of floating-point additions.
Thus, the MFU will serve these instructions most of the time, providing little bandwidth left
to serve integer instructions. The MFU may even reduce floating-point addition bandwidth if
we overuse it for integer execution. In [11], we have shown large performance improvement for
integer applications, ranging from 8-14%, and for floating-point applications, the scheme has
successfully avoided this type of performance loss.

We implement the MFU RS to have 8-entries and issue instructions in an in-order manner
for reasons fully explained in [11].

The real hardware costs for the RS-MFU architecture modification lie in the steering logic,
extra read and write ports in the integer register file and the extra wiring. Providing data paths
from both register files (int and fp) to MFU in real implementation may require layout change
or multi-cycle read and write from one of the register file to MFU. In terms of die area, the
steering logic should cost < 1% of current R10000 chip die area. We judge these hardware costs
to be small, even more so when considering the performance gain for integer applications.

3 Simulated Architecture Modifications

We consider future architecture modifications that have one thing in common: increased ability
of the processor to fetch and decode instructions. This type of modifications increases the
rate instructions are sent to functional units, increasing the pressure on the functional units
to consume instructions faster. We hypothesize that this pressure is associated with IPC gain
provided by an MFU (which we prove in Section 4 and analyze in Section 5). We simulate the
following architecture modifications:

¢ Wider-issue superscalar architecture (8-way, 16-way). Suppose that we increase
the fetch, decode and commit width to 8- or 16-way, but maintain the functional unit
configuration of the base and RS-MFU scheme (as in Figure 2), then we can fetch more
instructions per cycle, limited by branch prediction and instruction alignment in the I-
cache.

e Larger on-chip cache (loc). This modification reduces the number of instruction cache
misses and thus allows the processor to have less vertical waste in the instruction fetch
slots.

3Note that memory instructions that are sent to MFU RS are also sent to the address RS. MFU only performs
the address generation, then passes the results to the address reservation station, which performs the actual loads
and stores.



¢ Processor-memory integration (pim) [8, 10]. This modification decreases the time
taken to satisfy instruction cache misses, resulting in less vertical waste in the instruction
fetch slots.

¢ Better branch prediction (pbp). Higher accuracy in branch prediction means we can
afford to predict more branches per cycle. This allows us to fetch more instructions from
several basic blocks. Thus, it reduces horizontal waste in instruction fetch slots, resulting
in more instructions fetched per cycle.

In the simulation, we use integer and floating-point applications from Spec95 benchmark [2]
plus kmeans [17] as the codes of interest. These include perl, li, ijpeg, compress, swim, su2cor,
and waveb. Kmeans is an iterative clustering algorithm. Clustering algorithms are often used in
image processing or computer vision applications. For Spec95 applications, we use the training
data set. For kmeans, we use -D3 -N10000 -K30 -n50 as the parameters. RS-MFU increases
integer execution bandwidth thus IPC gain is expected for integer applications. Floating-point
applications are included in the study just to show that for all architecture modifications that
we simulate, the RS-MFU scheme does not reduce the IPC by any noticeable amount.

The parameters of the simulation are shown in Table 2. Parameters in the architecture
modifications that are not listed in the table have the same values with the base R10000. All
architecture modifications (8-way, 16-way, pbp loc, pim) are applied to both the base architecture
(R10000) and to the RS-MFU scheme, and the two versions are compared to measure the IPC
gain and speedup. We chose to implement single architecture modifications one at a time
measuring the IPC gain obtained by using RS-MFU scheme over the base without MFU, so that
we can isolate the performance effect.

Simplescalar simulator [6] is used for the experiments. We made modifications to Sim-
plescalar to partially simulate a MIPS R10000. We chose R10000 because it is a well-understood
RISC architecture. We model the R10000’s reservation stations, instruction latencies, and func-
tional unit configuration. Some of Simplescalar features which are different from R10000 are left
unchanged. Specifically, the renaming scheme uses a reorder buffer, thus, we set the number of
registers to 32 int + 32 fp (instead of 64+64 in R10000). We set the ROB entries to 64 so that
only the number of entries of the reservation stations limits instruction dispatch. There is no
checkpoint repair mechanism for branch misprediction. So, when a branch misprediction occurs
after the execution of a branch, the pipeline is immediately flushed and the fetch is redirected.
And finally, some parameters shown in Table 2 are different from the R10000.

4 Simulation Results

Each architecture modification given in Table 2 results in higher IPC because they increase the
fetch/decode rate (Figure 3). However, the magnitude of the improvement is code dependent. In
integer applications, perfect branch prediction provides the highest IPC boost. Integer applica-
tions on average have 1 conditional branch in 5 instructions. Thus, boosting branch prediction
accuracy has a high impact on the IPC. In floating-point applications, processor-memory in-
tegration (pim) provides the highest IPC boost. This is due to the large working sets in the
floating-point applications, which cause large L1 data cache and L2 cache miss rates. Miss
rates are low in integer applications for our choice of input set, since the working set fits in
the cache. Thus, pim benefits floating-point application performance the most. An anomaly



Table 2: Simulation parameters
Parameters Values
Fetch, decode, and com- | 4
mit width
Issue out of order

Base R10000

Branch prediction

Bimod, 512 entries

Number of registers

32 int + 32 fp

Functional units

ALU1, ALU2, LSU, FPUI,
R10000 latencies

FPU2 with

ROB

64 entries

Reservation stations

16 entries int, addr, and fp

L1 cache

2-way, 32 KB-I 4+ 32 KB-D, 1 cycle hit

L2 cache

2-way, 4MB, 11 cycle hit, 69 cycle miss

R10000 with RS-MFU

Functional units

ALUL, ALU2, LSU, MFU, FPU2 (R10000
latencies)

Reservation stations

16-entry int and addr, 8-entry mfu and fp

Architecture modifications, applied to both base R10000 and R10000 with RS-MFU

8-way Fetch, decode, and com- | 8
mit width

16-way Fetch, decode, and com- | 16
mit width

Perfect branch prediction | Branch prediction perfect

(pbp)

Large on chip cache (loc) | L1 cache 4-way, 128 KB-I + 4-way, 128 KB-D, 1 cycle
hit
Processor-memory L2 cache none

integration (pim)

Processor-memory

memory bus 32 bytes, access latency 5 cycles




in our observed codes is kmeans, which while primarily an integer application, has quite many
floating-point additions and a large working set. Thus, it benefits both from pim and pbp, as
shown in the figure. The IPCs for RS-MFU scheme with each of the architecture modifications
are similar to Figure 3, only higher. Now that we understand the relative performance improve-
ment for these types of architectural modifications, we wish to observe whether the RS-MFU
implementation will give even higher IPC gains.
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Figure 3: IPC of base architectures: R10000 + its modifications

IPC gain is calculated as the difference in measured IPC values between the schemes (with
and without MFU), as shown in Figure 4. For floating-point applications, the MFU provides
little benefit since most of the time the MFU has to serve floating-point additions. The resulting
potential TPC gain is usually offset by the mutation penalties. Waveb has been shown to have
high mutation frequency, thus in most architecture modifications, the IPCs are reduced, by a
small amount. Swim and su2cor provide IPC gain, albeit small.

For integer applications, all IPC gains are positive, indicating that for all architecture modi-
fications and all integer applications tested, the RS-MFU scheme offers better IPC than the base
scheme. The question is how the IPC gain varies with architecture modifications. The first bar
of each grouping of Figure 4 shows RS-MFU gains in IPC over the base architectures, ranging
from 0.13 to 0.23.

With large-on-chip cache applied to the R10000 and RS-MFU (the second bar), the RS-MFU
gains more IPC on some applications (compress, li, and perl) ranging from 0.15 to 0.19, the same
IPC on kmeans, and loses a little bit of IPC gain on ijpeg. The decrease in IPC gain (0.003) in
ijpeg is statistically insignificant.

In processor-memory integration (pim), L2 cache is eliminated, processor-memory bandwidth
is increased, and memory access latency is decreased. It results in a faster supply of instructions
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Figure 4: IPC gain of RS-MFU scheme over the base architecture with various architecture
modifications. IPC gain = IPC(RS-MFU with mod) - TIPC(R10000 with mod).

in the case of instruction cache misses. This gives higher fetch/decode rates for all applications,
resulting in higher IPC gain, especially for compress, li, and perl.

With 8-way and 16-way, all applications get much larger IPC gain ranging from 0.17 to 0.34.
The increase in fetch/decode rate resulting from a wider fetch is limited by branch prediction
and instruction cache line size. Thus, although the 16-way case provides even larger IPC gain
than the 8-way case, the increase is not as large as in 8-way versus 4-way 2.

Finally, in perfect branch prediction (pbp), all applications get higher IPC gain with the use
of RS-MFU scheme. The increase is very large for compress, li, and perl, but more moderate
for ijpeg and kmeans.

Thus, all applications generally enjoy the higher IPC gain provided by the RS-MFU. How-
ever, is it also the case with the speedup, i.e. does RS-MFU enhance the speedup of applications
on the architecture modifications tested. Speedup increase is harder to obtain than an increase
in IPC gain, because increases in IPC gain do not necessarily mean increased speedup. An
example is shown in Table 3. The table shows that although IPC gain provided by RS-MFU
increases from 0.1 (base) to 0.15 (with architecture modification), the speedup decreases from
1.1 to 1.075. To maintain the speedup, the IPC gain has to be increased by the same factor as
the increase of IPC of the base with architecture modification over the base without architecture
modification (a factor of two in our example).

Figure 5 gives the resulting speedup. Despite the previous example, amazingly the speedup
of integer applications increases whenever IPC gain increases (compared to Figure 4). Out of all

4These improvements may be artificially inflated since we don’t change the number of functional units as done
in [9]. We believe this underscores the potential use of MFUs (as is our goal) by giving larger execution bandwidth
per functional unit.
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Table 3: TPC gain versus speedup example
’ Modification ‘ Base ‘ RS-MFU ‘ IPC Gain ‘ Speedup ‘

R10000 (no mod) 1 1.1 0.1 1.1
with mod 2 2.15 0.15 1.075

architecture modifications, wider fetch (8 and 16-way) increases the speedup the most, followed
by perfect branch prediction (pbp) and large-on-chip cache (loc). Processor in memory (pim)
offers the least increase in speedup. To summarize, for all architecture modifications, RS-MFU
provides speedup ranging from 8% to 21%, a significant speedup considering the small hardware
cost mentioned. Floating-point applications enjoy a very small positive or negative speedup

(within £+ 2%) for all cases.
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Figure 5: Speedup of RS-MFU scheme over the base architecture with various architecture
modifications. Speedup = IPC(RS-MFU with mod) / IPC(R10000 with mod).

5 Analysis and Discussions

5.1 Rates Analysis

The potential IPC gain provided by the RS-MFU is related to the stall time due to unavailable
functional units. This type of stall is caused when the speed capability of the processor to
fetch/ decode® instructions exceeds the speed capability of the processor to execute the instruc-

Sincluding rename and dispatch.
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tions. It is natural to think of the processor as having a front-end (fetch and decode stages,
with rate f) and a back-end (issue and execute stages, with rate e). At a given time during the
execution, we may see the cases as shown in Table 4.

Table 4: Behavior of Fetch/Decode Rate (f) and Issue/Execute Rate (e) at Run-time
‘ Case ‘ Probability ‘ Caused by ‘
f<e 1—« I-cache/tlb number and latency of misses, branch pre-
diction limitation, non-optimal instruction alignment

in cache, fetch width limitation

f>e Q unavailable functional units, data dependency

An architecture modification that reduces the items listed in the “Caused by” column in
Table 4 will decrease the associated probability. For example, reducing instruction cache misses
increases the probability («) of f > e. When « increases, instructions are dispatched into the
reservation stations at a faster rate (up to the point where reservation stations are full, and we
have f = e). This increases the stall time of an instruction due to unavailable functional units.
Thus, larger values of « indicate higher potential IPC gain that can be provided by the MFU.

All architecture modifications that we experiment with in Section 4 increase « in one of the
following ways: 8way and 16-way fetch increases the fetch width; large on-chip cache reduces
the number of I-cache misses; processor-memory integration reduces latency of cache misses; and
finally perfect branch prediction solves the limitation in fetch rate imposed by branch predictor.
Consequently, the IPC gain obtained by the RS-MFU is generally higher for those architecture
modifications.

In real processor implementation, there will be many architectural modifications to improve
IPC combined together. Although it will be difficult to determine the effect of combined archi-
tecture modifications on IPC gain provided by RS-MFU, as long as we can analyze how this
combination affects «, we can predict whether the IPC gain of RS-MFU will increase or decrease,
although currently there is no model to predict the magnitude of the increase/decrease.

5.2 Theoretical Foundation

f and e are hard to quantify in real processors. However, they can be quantified with some
assumptions, as in [1], which we will discuss briefly here. The approach is based on queuing
theory and provides the stall time due to unavailable functional units in IPC.

We are interested in the relationship between fetch/decode and issue/execute rates as archi-
tecture modifications are made. The system can be modeled as a simple queuing system where
customers are instructions, servers are functional units, customers arrive at the fetch/decode
rate, and customer are serviced at the issue/execute rate. Now, let us introduce some variables
to allow definition of our queuing system. Full details of this analysis technique are discussed
in [1].

12



average inter-arrival distance between instructions (quantity without unit)

average service time in cycles for each instruction

Beps  effective number of instructions fetched and decoded per cycle. While queuing model
allows us to limit the reservation station size of the buffer between arrival and service,
in this discussion we assume an infinite size reservation stations to decouple .y
from meys for more straightforward analysis.

meysp effective number of instructions that can be executed per cycle by the functional

a| (S

units.
Fetch/decode rate is thus calculated as f = ﬁ%i where .y is architecture and code depen-
dent and ¢ is measured from the code. Issue/execute rate is calculated as e = mgf L where both

mess and T are architecture and code dependent.

All of t, T, Befs, meps can be calculated if synthetic codes with uniform instruction streams
are used, allowing for direct validation of the model. Synthetic codes allow us to control the
number of instruction cache misses, data cache miss effect, number and location of conditional
branches, instruction alignment, and data dependency. Thus, the non-overlapped stall time due
to unavailable functional units can be calculated because all parameters are known. And this
gives indication of how much IPC gain is to be expected from RS-MFU scheme for the various
architecture modifications. While quantitative analysis can be provided using this technique on
synthetic codes, using this model in the context of the previous subsection provides insight to
RS-MFU performance on real codes.

5.3 Other Architectures and Other Benefits of MFUs

Other architectures that can potentially increase the IPC gain provided by the MFU are:

e Simultaneous multithreading (SMT). Since we can fill instruction slots with instruc-
tions from different threads, it is more likely that all slots are filled with instructions.
Thus, it increases fetch/decode rate.

e Trace cache. Trace cache allows fetching traces instead of instructions. In the original
design, a trace cache can supply up to 16 instructions or 3 basic blocks [7] per fetch,
providing much more instructions per cycle than the traditional instruction cache-only
approach. Thus, fetch/decode rate increases.

e Superspeculative architecture. Predicting load values allow instructions to be dis-
patched without waiting for their operands [14]. Although this architecture does not
necessarily increase fetch rate, it can increase decode rate®, resulting in more instructions
ready to execute per cycle.

In addition to potential IPC gain increase in the architecture modifications listed above,
there are other benefits of MFU in SMT and trace processor architecture.

In a six-issue superspeculative trace processor of Hal SparcV 64 [4], the MFU enhances the
packet construction flexibility and consequently average packet size. In their design, a packet in
the trace cache is broken when the instructions in the packet do not match the functional unit

Smore precisely, dispatch and issue rates also increase, but execute rate is limited by the functional unit

configuration.
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configuration. Converting the 2 FPUs to MFUs will provide flexibility in packet construction,
for example it can now have any combination of 2 fp + 2 int, 1 fp + 3 int, and 0 fp + 4 int
instructions, which traditionally requires breaking the packet.

In the design of future 8-way SMT Alpha 21464 [3], instructions from up to 4 threads can
share functional units. It is likely that functional units are clustered because of the high clock rate
requirement. With the MFUs providing higher integer execution bandwidth while maintaining
the same number of functional units, it may reduce the number of clusters needed to serve the
4 threads, resulting in lower inter-cluster communication penalties.

Judging from these IPC gain benefits and other benefits, we believe that MFUs will even be
more important in future processor architectures.

6 Conclusions

We have described briefly the hardware design of a mutable functional unit and an architecture
scheme (RS-MFU) with small hardware cost that exploits the MFU to speedup integer applica-
tions. We have shown that many architecture modifications expected in the future increase IPC
gain provided by the MFU. Our study also points to the increase in speedup with the archi-
tecture modifications. We show the results for 7 Spec95 applications (perl, ijpeg, li, compress,
swim, su2cor, wave5) and kmeans with architecture modifications such as large on-chip cache,
processor-memory integration, wider issue superscalar architecture (8 and 16-way), and better
branch prediction (perfect). We also point to other future architecture modifications (SMT,
trace cache, and superspeculative architecture) and how IPC gain provided by the MFU may
increase in these architectures. In addition, we discuss other benefits of MFUs.
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