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Abstract: This report presents a methodology for mapping linear processor arrays onto
FPGA components. This methodology is based on the analogy of this mapping problem
with the knapsack problem : for a given knapsack with a specific weight capacity, and for a
set of objects characterized by their weight and their profit, find the best subset of objects
to put in the knapsack for optimizing the profit without exceeding its weight capacity. We
show how a standard knapsack problem resolution is adapted to define a placement that take
advantage of regularity and locality properties of linear array structures. This placement
allow vendor tools to skip this phase and produce fast and optimized routing.
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Utilisation du probléme de sac & dos pour le placement
de réseaux réguliers sur circuits FPGA

Résumé : Ce rapport présente une méthode pour placer des réseaux réguliers de pro-
cesseurs sur des composants FPGA. Cette méthode est basée sur 'analogie de ce probléme
de placement avec le probléme du sac a dos : étant donné un sac & dos d’une certaine capac-
ité d’emport de poids et étant donné un ensemble d’objets caractérisés par leur poids et leur
profit, trouver I’ensemble d’objets a mettre dans le sac & dos qui maximise le profit tout en
n’excédant pas la capacité du sac & dos. Nous montrons comment une méthode standard de
résolution du probléme du sac & dos est adaptée pour produire un placement qui tire avan-
tage des propriétés de régularité et de localité des réseaux réguliers. Ce placement permet
aux outils standards de passer la phase de placement et de réduire la phase de routage.

Mots clés : réseaux réguliers, placement rapide, FPGA
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1 Introduction

In many compute intensive applications such as image or signal processing, time is mostly
spent in executing loops. Speeding-up these applications, for example under real-time con-
straints, leads to hardware implementations which directly benefit from the inherent loop
parallelism. The resulting architecture is a regular array, often a systolic array, made of
simple processing elements dedicated to efficiently performing the body of the inner loops
[1]. The structure can either be 1 or 2-dimensional array, but in the following we will re-
strict to linear arrays only. This restriction is justified since it is possible to transform a
2-dimensional array into a 1-dimensional array by serialization. Moreover, the implemen-
tation of a 2-dimensional array without serialization could result in an array throughput
which will exceed available input/output capabilities.

Implementing such nested loops onto FPGA components presents many advantages.
First, the regular nature of FPGA component — an array of small bit-processing elements
— matches perfectly the architecture we focus on: a replication of identical regularly inter-
connected processing elements. Second, the best uses of FPGA boards (from a performance
point of view) have been demonstrated on many compute intensive applications, as illus-
trated by the numerous applications implemented on the PAM boards [2]. Third, new
advanced microprocessor architectures tend to incorporate reconfigurable resources in their
data-path. Parallelizing loops on these specific areas is a very attractive way to efficiently
exploit reconfigurable computing.

We advocate that if, today, implementing high performance architectures on reconfig-
urable platforms is technically feasible, the main restriction comes from the programming
tools. We still code these “programmable” devices as the first programming pioneers did
when they were using assembly languages for programming early computers. Efficient im-
plementations are achieved with a very good knowledge of the FPGA component structure
together with a long experience of how to handle the entire tool outfit presently required to
create a design. Without putting down the research of new reconfigurable computers, which
must continue to be imaginative, we believe that their success is also tied to the ability to
provide high level programming tools. Our work goes in this direction.

More precisely, the reconfigurable computing research project of the COSI team at
IRISA, aims to automate the hardware parallelization of nested loops onto FPGA boards.
There are three major steps as described in [3]:

e Parallelization: This step consists in deriving regular array architectures (systolic
as well as semi-systolic) from loop specifications or equivalent formal description such
as systems of affine recurrence equations. This model supports a powerful theory of
space-time transformation methods which are now also used for automatic paralleliza-
tion. The ALPHA language, developed at IRISA allows the programmer to explore
transformations needed for systematic derivation of regular arrays and for automatic
parallelization [4] [5].

e Partitioning: Since the available reconfigurable resources have physical limits, and
may not support the entire array, transformation of the architecture is required. It con-
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sists in splitting the array into sub-arrays or clustering groups of processing elements.
The automating of this task is still ongoing research and is not yet fully resolved.

e Physical Mapping: This last step maps the architecture on the reconfigurable sup-
port. From a RTL description (provided by the previous stages), one must find the
best mapping both in term of speed performance and area occupation. This is actually
a very time-consuming step which tends to become longer as the FPGA components
grow in complexity.

The work presented in this report deals with the last stage. It focuses on reducing the
place-and-route process involved in the physical mapping task by taking advantage of the
regular nature of the of the array we want to map.

The next section exposes first the regular place-and-route foundation. Section 3 presents
related work. Section 4 explains our strategy for mapping linear array onto FPGA. Section
5 concludes.

2 Regular Place-and-Route Foundation

The place-and-route process is generally performed by the vendor tools associated with the
FPGA component family because access to low level details are proprietary. The input is
often a flat RTL architecture (i.e. without hierarchical structure), and the goal is to find the
best match between the FPGA component structure and the circuit to implement, knowing
that the routing channels are resource limited. In other words, this induces distributing
first the boolean equations and registers among the FPGA bit-processing elements (referred
in the following as LUT since a common implementation is based on Look-Up Table) in
such a way that the connections are minimized. Then, the routing process can take place.
Generally, better the placement, faster the routing.

However these two steps are very time consuming, especially with the larger FPGA
components. This is mainly due to the algorithmic techniques (such as simulated annealing)
used for finding reasonable solutions. The advantage of these techniques are their generality:
they provide relatively good solutions whatever the structure of the designs. In our case, as
we try to shift towards software compilation requirement, the major drawback is definitely
the computation time.

One way to limit this time is to provide the best placement as possible to optimize
the routing phase. The methodology we developed for mapping regular arrays onto FPGA
components is mainly based on this idea. Our thesis is that placing an array of processing
elements according to its regular and locality properties brings three major improvements
over usual place-and-route techniques:

1. the placement time is drastically reduced;
2. the routing time is optimized;

3. the frequency is increased;
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Figure 1: Comparison of 2 physical mappings of a linear array (top of the figure) : (a)
without pre-defined placement; (b) with pre-defined placement. A processing element fits
into 8 LUTs (4 logic blocks). In (a), the intrinsic regularity of the array is partially respected
but some processing elements are split into distant LUT, and logically adjacent processing
elements are not physically close. In (b) a processing element is clustered into 8 adjacent
LUTs, and the closeness of logically adjacent processing elements is scrupulously respected.
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6 Erwan Fabiani and Dominique Lavenier

Our placement strategy for taking advantages of these improvements is based on the
following rules:

1. Signals which belong to a same processor have their sources placed in a same restricted
area. This implies:

e the reduction of the placement time: the possibilities for distributing the boolean
equations generating these signals over an enclosed area are limited;

e the reduction of the routing time: the possibilities for routing signals in a re-
stricted area are limited;

e the reduction of the delay: the connections inside a limited area are short.

2. Identical processors have identical placement: the placement focuses only on one pro-
cessing element and is replicated over the FPGA component. The time is thus inde-
pendent of the number of processing elements.

3. Neighboring processing elements are close to each other. The expected benefits are:

e a reduction of the placement time: the possibilities for placing the processing
elements are actually very limited;

e a reduction of the routing time: again, the possibilities for routing the connections
between processing elements connections are limited;

e a reduction of the delay: short connections between processing elements.

Figure 1 illustrates our placement strategy: in addition to reflecting the regularity of
the linear array architecture, finding the best 8-LUT arrangement and replicate it over the
FPGA array is obviously faster than blindly seeking a global mapping.

A few experiments have been carried out to validate this thesis, and are summarized in
the figures 2 and 3. Basically, we compare the time to place-and-route a design with and
without placement directives. The expected frequency (given by the place-and-route tool)
is also reported.

In figure 2, the comparison unit is given by the time to place-and-route an unplaced
design. In figure 3, we compare the speed-up induced by designs with placement directives
against designs without placement directives. This comparison is done for the placement
step runtime, the routing step runtime, the place-and-route runtime and the clock frequency.

The designs are very regular structures and are taken from real applications:

e Lyon is a linear systolic implementation of the Lyon’s bit-serial multiplier [6]. The
length of the array is equal to the data word length.

e Conv is a systolic implementation of a 16-bit pseudo-convolution in which the multi-
plier has been replaced by a logical AND.
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Figure 2: Average runtime comparison to place-and-route a design with (Plac. Dir.) or
without placement directives (No Plac. Dir.), on a normalized unit scale

e Gene implements the mutation part of a systolic genetic algorithm [7]. An elementary
8-bit processor is composed of a shift register, an accumulator, a comparator, and three
bank registers.

The designs Lyon, Conv, Gene are implemented on a XC4020 Xilinx [8], using the PPR
Xilinx place-and-route tool. Placement is achieved using the constraint directives provided
by PPR.

Actually, the values given in the above table are average values: for each design several
place-and-route runs have been performed with different options available on the router.

In these examples, we observe that the placement phase is more time consuming than the
routing phase, and shortening this step results in a significant speed-up, even if the routing
phase, in some cases (cf. Conv), increases.

Of course, these experimental results must not be considered as definitive values, but
rather as tendencies confirming our intuitive idea. They just indicate that a pre-placement
step is interesting in the case of regular architectures, and, further, that it does not lead to
degraded clock frequency.
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rectangular tile to each processor. This tile is identical for all processors and is selected so

initial shape using mincut algorithm. Then random distortions of this shape are performed
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SDI

SDI [10] aims to keep regular datapath structure during the physical mapping step in order
to reduce compilation runtime and to increase clock frequency. The designs targeted by SDI
are very regular : they are modeled as a regular datapath of modules and each module is
compound of basic slices. In SDI, the design implementation is globally done in three steps:

e A set of possible physical implementation is generated for each module

e The choice of each module implementation and their linear placement is done simulta-
neously using a genetic algorithm. Criterions used during this step are the uniformity
of module implementation, the connection length between modules and the possibili-
ties of adjacent module compaction.

e A compaction of adjacent modules is tried : standard synthesis algorithm is locally
applied to adjacent module slices, keeping the module sliced structure.

The placement found by SDI is then expressed with placement constraints to be used
by vendor tools. Results show a 2.47 average speed-up of the place and route runtime and
a 15 % average increase of clock frequency.

GAMMA

GAMMA [11] uses a tree covering method to produce fast datapath module mapping. De-
signs are described as a dataflow graph in which each nod is an operator. GAMMA relies on
a module library and each module can implement one or several operators. Thus GAMMA
tries to find the best covering of operators using these modules and place them. GAMMA
operates in four steps :

e The design dataflow graph is converted into a DAG which is split into trees.

e FEach tree is covered in topological order using module library. The linear order of the
chosen modules is done simultaneously : it is determined by the tree covering. For
modules of the same order, all possible placements of these modules are tested and the
one that minimizes the net lengths is chosen.

e Local optimization is performed at boundary of adjacent trees.

e Each selected module is generated given datapath width, constants inputs, etc.

As SDI, the output of GAMMA is a netlist file containing mapping and placement con-
straints which is routed by vendor tools. Compared to a full place and route performed by
vendor tools, the place and route runtime is speeded up by 2.06 on average using GAMMA.
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Bipartitioning

Another method of fast placement that relies on design structure is the bipartitioning based
floorplanner [12] . The input designs are based on a set of predefined macros. These macros
have a fixed area and a fixed or flexible shape. The floorplanner determine a physical
placement for fixed shape macro. For flexible shape macro, it find the shape dimension, the
internal placement and the physical placement. The floorplanner operates in three steps :

e The set of macros is successively bi-partitioned in subsets, keeping highly connected
macros in a same subset. In the same time, the area slice is divided in the same
way, with alternated horizontal or vertical cuts, in order to have one area slice asso-
ciated with each macro subset. The successive bipartitioning is terminated when the
cardinality of each subset is inferior to a fixed number.

e For each area slice, an exhaustive search of the best relative placement of its macros
is done. Since the number of macros by subset is small, this exhaustive search do not
cost too much time. Then the fixed shape macros are placed. For each flexible shape
macro, adjacent columns of logic blocks are allocated on the area slice to contain the
macro CLBs. These CLBs are placed in these columns using simulated annealing.

o After the floorplanning there could be unused CLBs. The step of compaction eliminate
unused rows and columns of CLBs from the floorplan.

The bipartitioning method obtain a 2.94 average speed-up of the place-and-route runtime.
The FPGA area used is increased or decreased according to the design (from +33 % to -29
%), but the clock frequency is similar.

4 Regular Place-and-Route Strategy
4.1 The FPGA Regular Array Placer (FRAP)

Figure 4 details the place-and-route environment for mapping regular arrays onto FPGA
components. The input is a RTL description without placement directives.
The regular placement is performed with the FRAP tool and acts in three steps:

1. All possible shapes for a processing element are generated by combining all shapes of
its sub-components.

2. A full snake placement of the linear array is determined using the processing element
shapes previously computed.

3. The final placement of the processing elements are performed according to their shapes.

Steps 1 and 3 deal with processing element placement. We consider those elements
rather small, that is a few operators essentially coming from a library, and that finding
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RTL description Processing Element
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without placement Shape Generation
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Figure 4: The FPGA Regular Array Placer (FRAP): the RTL description given as an input
is processed and output with placement directive annotations.

a good placement is a fast and non critical process. On the other hand, step 2 is more
interesting as explained in the next sections.

The FRAP output is also a RTL description, possibly modified but equivalent to the input
one, with placement directives. From this description an EDIF file is generated and input
to the vendor place-and-route tools. Since the placement is fully specified, the computation
time is reduced to roughly the time for routing the FPGA component.

4.2 The Snake Placement Strategy

The problem is to place a linear array on a 2-dimensional FPGA structure. The only way
to keep two neighbor processing elements close to each other is to implement a snake-like
arrangement of the array. The determination of the snake-like arrangement proceeds in two
phases: (1) divide the FPGA area in sub-areas that we call convenient areas, and (2) for each
convenient area, place a maximum number of processing element in a snake-like fashion.

Convenient Area Partitioning:

This step is required because of the physical I/O constraints of the reconfigurable support.
The first and the last processing element of an array cannot be located anywhere. They
must be implemented near some specific physical I/O connectors.

A convenient area is defined as a rectangular area in which the locations of the first and
the last processing elements are situated in two different corners. If, initially, the full FPGA
area is not a convenient area (that is, if the I/O constraints impose that either the first or
the last processing element is not located in a corner), then this area must be divided into
convenient sub-areas.
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Figure 5: Partitioning into convenient area. Three cases must be considered according to
the boundary processing element locations. An operation (of type T1 or T2) divides the area
into two sub-areas in such a way that at least one boundary processing element is located
in a corner of a new area.

The convenient areas are determined by analyzing the location of the first and the last
processing elements (boundary processing elements) and applying a corresponding splitting
operation. Three cases may occur:

e case 0: Boundary processing elements are in two different corners. This is a convenient
area. No further processing.

e case 1: Only one boundary processing element is in a corner. Apply operation T1.

e case 2: No boundary processing elements located in a corner. Apply operation T2.

An operation (of type T1 or T2) consists in separating the area in two new sub-areas
with at least one boundary processing element located in a corner in one of the two new sub-
areas. To each new created sub-area a fictive boundary processing element is also created.
Note that it is always in a corner. The process is recursively applied on the sub-areas which
are not convenient areas. Figure 5 gives some representative but not exhaustive examples
of the process. As the operations applied to case 2 reduces the new sub-areas to case 1 or
case 0, and operation applied to case 1 reduces the new sub-areas to case 0, the partitioning
into convenient areas is at most performed in two iterations.
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start and end are on adjacent corners start and end are on opposite corners
vertical snake horizontal snake vertical snake horizontal snake

even number even number odd number odd number

of segments of segments of segments of segments

Figure 6: Determination of the snake orientation and the number parity of the segments
according to the location of the boundary processing elements.

Snake Placement:

First, the orientation and the segment number parity of the snake are determined according
to the location of the boundary processing elements (see figure 6). A segment is a line (or
column) of processing elements. Thus, a snake is specified by two parameters: its orientation
(vertical or horizontal) and the segment number parity. The problem is now to fit a maximum
number of processors in the convenient area according to these two parameters. In order
to get as much as flexibility as possible, and also to avoid wasting space, we do not insist
that two segments belonging to the same snake are composed of processing elements with
identical shape (since we have a collection of possible shapes for the processing elements).

This is typically an optimizing problem and we solve it using the knapsack metaphor:
for a given knapsack with a specific weight capacity, and for a set of objects characterized
by their weight and their profit, find the best subset of objects to put in the knapsack for
optimizing the profit without exceeding its weight capacity [13].

In our case, the objects are represented by the segments, the weight of an object is the
height of a segment (the dimension perpendicular to the data-flow), the profit corresponds
to the number of processors in one segment, and the capacity of the knapsack is the height
of the convenient area (see figure 7.b). The diversity of the objects (the segments) comes
from the ability for a processing elements to have several shapes.

The Knapsack problem is usually solved by dynamic programming where a function
f(4, k) is recursively computed [14]. The variable j represents the capacity (the height of the
convenient area) and k the number of objects (segments). Actually, we tailored the general
formula to reject some solutions (such as a wrong parity of segments) and to favor others
which minimize the number of different segments: smaller the number of different segments,
smaller the time for finding the placement of the corresponding processing elements.

Figure 7.a is an illustrating example of the result of the FRAP placement. The full FPGA
area has been partitioned into three convenient areas. In the convenient area 1, an horizontal
snake is made of two different segments, segment of shape A and segment of shape B. The
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Figure 7: A:illustrating placement produced by FRAP. B: Knapsack problem correspondence

convenient area 2 is also an horizontal snake made only with a processing element of shape A.
The convenient area 3 is a vertical snake made of processing elements of shape C. The overall
placement requires of determining placements for the 3 different shapes of the processing
element.

4.3 Implementation

FRAP is implemented in JAVA. It takes as input a RTL description of a linear array without
placement and outputs an equivalent description consisting of snake placement.

Although FRAP is still under development, the current version is sufficiently operational
to make some test and experiments. The knapsack technique ensures optimal solutions and,
in the present case, in a very short time. To give an idea, the placement of a linear array with
large processing elements (150 LUTs) on a Xilinx Virtex 1000 takes less than two seconds
on a 295 MHz Sun UltraSparc workstation.

5 Conclusion and Future Works

We have presented a strategy for placing linear regular arrays onto FPGA components. This
strategy uses the knapsack technique and provides fast placement compared to the vendor
tools. The speed-up comes mainly from the regular nature of the architecture we focus on,
that is, linear arrays of identical processors on which a two-level placement is achieved: (1) a
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cell-level placement and (2) an array-level placement. A CAD tool, called FRAP, is currently
under development for implementing this strategy.

Even if we can drastically shorten the placement step, the overall place-and-route process
remains too long to be included into a compiling framework. It may takes a few tens of
minutes up to a few hours to achieved a suitable routing, that is definitely too long for
programmers who are used to a faster compiling process. Consequently, the next step is to
shorten the routing phase.

As for placement, this step can benefit from regular architecture by duplicating routing
pattern of the processor cells. Unfortunately, unlike for placement, this strategy cannot
be implemented through a few “routing” directives. It requires a detailed knowledge of the
routing resources of the target FPGA as well as direct access to the programming of the
routing switches.

The solution we are considering to overcome these problems is based on the concept of
“Virtual FPGA”. Such a device can be represented as an intermediate level between the actual
physical FPGA components and an abstract FPGA representation. This is comparable to
the concept of an abstract machine, such as a JAVA machine for example. In the present
case, the architecture of the Virtual FPGA would be targeted to efficiently support regular
arrays. The advantage of this approach is that programming such a device is independent
of the FPGA technology and the structure of the component is perfectly known. On the
other hand, it is a much more resource consuming approach compared to programming
directly a FPGA component with vendor tools. But as technology scales down, leading to
steadily increasing numbers of reconfigurable gates, it may not be a critical limitation. And,
perhaps, it may be the price to pay for speeding up and simplifying the programming of
reconfigurable systems.
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