Evaluation of the Streams-C C-to-FPGA Compiler:
An Applications Perspective

Jan Frigo Maya Gokhale Dominique Lavenier
Los Alamos National Los Alamos National IRISA - CNRS
Laboratory Laboratory Campus de Beaulieu

Los Alamos, NM, 87545
jfrigo@lanl.gov

ABSTRACT

The Streams-C compiler ([5]) synthesizes hardware circuits
for reconfigurable FPGA-based computers from parallel C
programs. The Streams-C language consists of a small num-
ber of libraries and intrinsic functions added to a synthesiz-
able subset of C, and supports a communicating process
programming model. The processes may be either soft-
ware or hardware processes, and the compiler manages com-
munication among the processes transparently to the pro-
grammer. For the hardware processes, the compiler gener-
ates Register-Transfer-Level (RTL) VHDL, targeting mul-
tiple FPGAs with dedicated memories. For the software
processes, a multi-threaded software program is generated.

The Streams-C language and compiler offer a very high
level of expressivity for reconfigurable computing applica-
tion development, particularly for stream-processing appli-
cations. We find this is reflected in productivity, for a factor
of up to 10 times improvement in time to produce a pro-
gram. However, use of the tool in the “real world” is pred-
icated on performance: only if such a compiler can deliver
performance comparable to hand-coded performance will it
be used in practice.

This paper presents an application study of the Streams-C
compiler. Four applications have been written in Streams-C
and compiled to the AMC Wildforce board containing Xil-
inx 4036’s. Those same applications have been hand-coded
in a combination of RTL and structural VHDL. We compare
performance of the generated code with the hand-optimized
code. Our study shows that the compiler-generated designs
are 1.37-4 times the area and 1/2-1 times the clock fre-
quency of the hand designs. We find that the compiler,
based on the SUIF infrastructure, can be greatly improved
through various standard compiler optimizations that are
not currently being exploited. Thus we are currently re-
writing a public domain version of Streams-C to better op-
timize and target the Virtex chip.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FPGA 2001, February 11-13, 2001, Monterey, CA.

Copyright 2001 ACM 1-58113-341-3/01/0002 ..$5.00

Los Alamos, NM, 87545
maya@lanl.gov

35042 Rennes cedex -
FRANCE

lavenier@irisa.fr

Keywords

FPGA, configurable computing, silicon compiler, FPGA de-
sign tools, high-level synthesis, hardware-software co-design

1. INTRODUCTION

Over the past ten years, Reconfigurable Computing has
demonstrated factors of 10 to 100 speedup over conventional
high performance workstations at relatively modest cost.
Field Programmable Gate Array (FPGA)-based accelera-
tor boards with customized hardware programmed into the
FPGAs have been used in signal and image processing ap-
plications for real-time embedded computation.

A major drawback to the widespread use of Reconfig-
urable Computing has been the cost of developing appli-
cations for these parallel systems. Current state of practice
is to use low level Hardware Description Language (HDL) to
describe the circuits realizing an algorithm. Not only is this
task extremely time consuming, but it requires hardware
design expertise. Thus successfully fielding applications for
Reconfigurable Computers typically requires a team of do-
main experts, software programmers, and hardware design-
ers.

There has been considerable research interest in reducing
design time for Reconfigurable Computer applications. Ap-
proaches have ranged from high-level optimization schemes,
to low-level, technology-specific, optimized designs. Some
examples of high-level optimization methods include: a C
to HDL method for high-speed pipeline circuits, focusing on
the exhaustive parts of an application such as loop and re-

cursive programs([10]); and a pipeline vectorizaton([15])technique

to optimize and pipeline candidate inner space loops for
hardware acceleration. Other techniques map a MATLAB
application([11]) to a distributed computing environment,
use graphical programming ([13], [14]), employ automatic
parallelization and synthesis ([7]) techniques. Low-level ef-
forts target technology-specific, optimized designs ([2]) or
automatic data storage and control ([12]) for computation.

In the Streams-C approach, we target an intermediate
level of expression. Our compiler processes a subset of C
suitable for automatic synthesis to FPGAs. Our program-
ming model is targeted at stream-oriented reconfigurable
computing applications. In this model, parallel processes
communicate via data streams. We optimize compiler syn-
thesis for high-rate flow of data streams; small, fixed size
data packets; and low-precision fixed point computation, all
characteristics of FPGA-based reconfigurable parallel pro-

cessing applications. Our system includes a functional sim-
ulation environment based on POSIX threads, allowing the
programmer to simulate the collection of parallel processes
and their communication at the functional level. Our com-
piler currently targets the Annapolis Microsystems Wild-
force board, containing 5 Xilinx 4036 FPGAs and four banks
of 32bit x 65K SRAM.

In the next section, we briefly review the Streams-C lan-
guage. Next we describe the performance study methodol-
ogy, describe each application, and compare performance be-
tween compiler-generated versus hand-optimized code. We
end with a summary of results and a discussion of future
work.

2. OVERVIEW OF STREAMS-C

The concept of stream-based computation is a fundamen-
tal formalism for high performance embedded systems, which
is characterized by (multiple) streams of data produced at
a high rate, with complex operations performed on the in-
coming data. The Streams-C [5, 3] language supports this
computational model with a minimal number of language
extensions and library functions callable from a C program.
The compiler targets a combination of software and hard-
ware.

For computation occurring in hardware, the compiler gen-
erates RTL VHDL for a target FPGA board containing mul-
tiple FPGAs, external memories, and interconnect. The
language extensions, such as declarations for a process or
stream, allocate resources on the board for these objects.
These extensions allow the programmer to allocate registers
on an FPGA and define register bit lengths; assign variables
to memories; define concurrent processes; define stream con-
nections between processes; and read/write streams to com-
municate data between processes. The processes operate
asynchronously, and synchronize through stream operations,
which may occur anywhere within the body of the process.
A distributed memory model is followed, with local state
belonging to each process and inter-process communication
via streams. The extensions include mapping directives to
give the applications developer control over the mapping of
processes to hardware components and of streams to com-
munication media on the target application board.

A hardware streams library has been built for the Annapo-
lis Microsystems Wildforce accelerator board. The compiler,
based on the Napa C compiler and Malleable Architecture
Generator (MARGE), synthesizes hardware circuits from a
C-language program. Although the target is a synchronous
set of circuits on multiple communicating FPGAs, the C
programmer does not have to be concerned with synchroniz-
ing state machines, or other hardware timing events. The
compiler-generated state machines control sequencing and
loops. The hardware streams library encapsulates the data
flow synchronization between stream reader and writer. The
combination of compiler-generated computation nodes with
the hardware streams library allows applications developers
to target FPGA boards from a high level concurrent lan-
guage.

A software library using POSIX threads provides con-
current processes and stream support in software. Thus
the software libraries support a dual function: when all
processes are mapped to software, our system provides a
functional simulation environment for the parallel program.
When processes are mapped to a combination of software

Streams-C

pre-processor

Synthesis \ Simulation

Runtime ‘ app_wf.cpp app.cf ‘ ‘ app_sim.cpp
Library
l Arch. /
Synthesis -\ Def.
Compiler G++
Hardware
Library

Figure 1: Organization of the Streams-C compiler:
The application written in streams-C (app.sc) goes
through the streams-C preprocessor which produces
three descriptions: app_sim.cpp for simulation pur-
pose, app.cf as an entry point for the synthesis com-
piler, and app_wf.cpp for running the host process.
The synthesis compiler translates the app.cf file into
a VHDL description for each processing element of
the Wildforce board. Thus the VHDL files are ap-
plied to the Xilinx CAD tools which generate the
bit-stream for the FPGA components.

and hardware, the software libraries are used for communi-
cation among software processes and between software and
hardware processes. Hardware libraries are used for com-
munication among hardware processes and for the hard-
ware side of communication to software processes. Figure
1 shows the software development flow for applications us-
ing the Streams-C compiler.

3. APPLICATION STUDY

In this section, we will discuss four applications that have
been mapped to reconfigurable hardware. These are

e contrast enhancement (previously reported in [6])

polyphase filter bank[1]
e Pixel Purity Index (PPI) [§]
e K-means clustering [9]

The contrast enhancement algorithm is used for grayscale
adjustments to pixels in an images. The polyphase filter
bank[1], is a key component of the digital receiver archi-
tecture being developed by Los Alamos (see rcc.lanl.gov).
The PPI and K-means clustering perform classification of
features in multi- and hyper-spectral imagery.

Each of these applications was implemented with hand-
coded VHDL and with the Streams-C compiler generated
VHDL. The same target hardware, the Annapolis Microsys-
tems Wildforce board, was used for each. This board con-
sists of five Xilinx 4000 Series FPGAs (X0...X4), each

with a dedicated SRAM. X0, X1 and X4 have bi-directional

FIFO connections to the host processor. Each FPGA X1...X4

has direct connection to its immediate linear neighbor. In
addition, all the FPGAs can communicate over a crossbar.

In this section, the algorithms will be described with re-
spect to algorithm parallelization and mapping to the hard-
ware. We compare hardware area utilization, speed and
development time estimates for both versions.

3.1 Contrast Enhancement

Histogram projection contrast enhancement is a well known
image processing transformation to perform grayscale ad-
justment to pixels in an image. Using statistics of the image
itself to control adjustments, the algorithm stretches con-
trast within the image to use the entire dynamic range of
the display. It is commonly used in IR video enhancement.

This algorithm was previously reported in [4], and thus
we briefly summarize the results here. The algorithm has
several phases. First, a histogram of the input image is
generated (Phase 1, Histogram Generation) and the total
number N of grayscale values in the image is computed.
New grayscale values are then assigned, with the darkest
grayscale value getting value 0, and the brightest grayscale
value getting value N-1. Intermediate brightness pixels are
given values in the range 0 through N-1. The new as-
signments are stored in a “contrast stretch table” (Phase
2, Contrast Stretch Table Generation). Next the image is
remapped to the new grayscale values by setting the new
grayscale value (n) for each input pixel to be n/N, yielding
a scaled value in the 8-bit range (Phase 3, Image Remap-
ping). The new pixel value is then output.

In mapping to the Wildforce, Phases 1 and 2 are per-
formed on a single chip, and Phase 3 on a different chip.
Phase 1 reads the input pixel, updates the histogram table,
and writes the pixel to memory. When all pixels of the image
have been read in, Phase 2 assigns the “stretch” values, and
reads the pixels back out of memory, passing the pixel and
stretch amount to an adjacent chip. Phase 3 does the divide
with a table lookup into its SRAM bank. The partitioning
between two chips is driven by the fact that Wildforce only
has one memory bank per FPGA chip, and Phase 3 needs a
dedicated memory for the table lookup. Thus for maximum
parallelism, two chips are used.

Written in Streams-C, this program consists of two host
processes and 2 FPGA processes. The first host process
reads images from disk and sends four pixels at a time to a
“controller” process on P0. The controller simply forwards
stream pixels onto the crossbar, which broadcasts the pixel
stream to processes on X2, which performs phases 1 and 2.
The X2 process then sends an input pixel plus the scaling
amount in a 16-bit packet to X1, which does the table lookup
and then sends groups of four output pixels to a host process.
The host process assembles the output frame.

The most computationally intensive processing is done on
X2, the process performing histogram and contrast table
generation. For that design, the hand-crafted version used
18 percent of the chip, and runs at 40 MHz. The compiler
generated version uses 57 percent of the chip, and runs at
20 MHz. Thus compiler overhead adds a factor of 3 to the
area, and a factor of 2 to the clock frequency.

The hand-coded design outputs a result every clock cycle.
In the compiler-generated design, a result is output every
other clock cycle. This is because the hand-coded version

uses the CLB RAMS to store the histogram table, and so
can do two memory operations in one cycle (store pixel and
store histogram value). While the compiler supports mul-
tiple memories and can produce a pipeline schedule with
single-tick result generation, we have not yet made CLB
RAMs accessible to the compiler, and thus had to sequen-
tialize the memory writes to a single memory.

In terms of design time, the hand done version took a
month to get working, while the Streams-C version took a
couple of days. This translates to a factor of 10 in produc-
tivity.

3.2 Poly-phase Filter Bank

In the field of signal detection, multi-rate filter banks have
been employed to help detect RF signals in noisy environ-
ments. By decomposing a signal into various frequency sub-
bands, filter banks enhance many algorithms because they
make it easier to identify pertinent material on a band by
band basis. The polyphase implementation' is a multi-
rate filter structure combined with a Fast Fourier Transform
(FFT) designed to extract subbands from an input signal[1].
The polyphase filter portion of the structure is based on a
prototype baseband lowpass Finite Impulse Response (FIR)
filter with symmetric coefficients, i.e., the first n/2 and the
last n/2 coefficents are the same, albeit in reverse order.
The remaining filters of the filter bank are frequency shift
versions of the prototype. The symmetry of this prototype
filter combined with the structured frequency shifts allows
for an optimal implementation of the filter bank. First, a
prototype low-pass FIR filter, A0/n], with the desired filter
parameters is designed. The polyphase filters, pk/n], are
expressed in terms of the prototype filter,

pk[n] = hO[k + IM]k =0..M-1,1=0..L—1

n is the length of the FIR prototype, M is the number of
polyphase filters, L is the length of the individual polyphase
filters, (L = n/M = 4). The FFT is used following the
polyphase filtering structure to provide the frequency shifts
for the various channels.

Figure 2 shows the parallelization for two polyphase sym-
metric filters and below is the Streams-C source code:

//coefficients for filter
#define C1 1

#define C2 117

#define C3 1741

#define C4 128

SC_FLAG(tag);

SC_REG(data, 32);

SC_REG(data_o, 32);

int s; //sample input data

int inl, in2, in3, in4;

int el, e2, e3, e4;

int ol, 02, 03, o04;

int evenp; //flag for even or odd data
int y1, y2; //filter output data

while (SC_STREAM_EOS(input_stream) != SC_E0S) {
#pragma ALP pipeline
//Get input data samples from the stream
s = SC_REG_GET_BITS_INT(data, 0, 8);

inl = C1 * s;
in2 = C2 * s;
in3 = C3 * s;

!The filter structure was developed in collaboration with
Prof. John Villesenor’s team at UCLA.

s(n)
Datainput
C@ 5 C3| C4
inl in2 in3 C in4
03 02 ol y2
H | H (1 ! R B 0
‘ \\‘/ Convolution of
odd samples
yl el e2
i) N B/ \m
AT g

Convolution of

even samples .
Multipy

D T*

I Clocked for even samples

Clocked for odd samples

Figure 2: Poly Phase filter bank implementation

ind = C4 * s;

if (evenp) {

yl = el + inl; //convolution of even data
el = e2 + in2;
e2 = e3 + in3;
e3 = in4;
SC_REG_SET_BITS_INT(data_o, 0, 16, y1);
}
else {
y2 = ol + in4; //convolution of odd data
ol = 02 + in3;
02 = 03 + in2;
03 = in4;
SC_REG_SET_BITS_INT(data_o, 0, 16, y2);
}
evenp = !evenp;

SC_STREAM_WRITE(output_stream, data_o, tag);
SC_STREAM_READ(input_stream, data, tag);
}

For comparison a filter bank of four is implemented on one
chip, computing only the convolution of even data samples.?
The input comes onto the FPGA via a stream from the host
and is unsigned, fixed point, 8 bit data. The coefficents are
unsigned, fixed point 12 bit values. The hand-coded design
mapped a bank of four polyphase filters to 27% of the area
at 40 MHz and the Streams-C version resulted in 37% area
utilization for the same speed. We notice that the Streams-
C compiler optimized away a multiplier when the coefficient,
C1, for the multiplier was one, i.e. Streams-C implemented
three multipies in the generated VHDL code. The hand-
coded version relies on the synthesis tool, (Synplify in this
case) to optimize the multiply operations. Both designs
deliver a result every clock cycle. The manual version of
the filter took about two weeks to implement on the hard-
ware while Streams-C design-to-implementation took a few
days, a development time savings of approximately 5 times.

2The loop as written is pipelinable, but our compiler does
not yet pipeline loops containing “if” statements. This ex-
tension to the compiler is in progress.

3.3 Pixel Purity Index

The Pixel Purity Index (PPI) is an algorithm employed in
remote sensing for analyzing hyperspectral images. Particu-
larly for low-resolution imagery, a single pixel usually covers
several different materials, and its observed spectrum is (to
a good approximation) a linear combination of a few pure
spectral shapes. The PPI algorithm tries to identify these
pure spectra by assigning a pixel purity index to each pixel
in the image; the spectra for those pixels with a high index
value are candidates for basis elements in the image decom-
position.

The algorithm proceeds by generating a large number of
random D-dimensional vectors, called skewers, through the
hyperspectral image. For each skewer, every data point is
projected onto the skewer, and the position along the skewer
is noted. The data points which correspond to extrema in
the direction of a skewer are identified, and placed on a list.
As more skewers are generated, this list grows. The number
of times a given pixel is placed on this list is also tallied.
The pixels with the highest tallies are considered the most

pure, and the pixel’s count provides its pixel purity index.

Most of the execution time of the PPI algorithm is spent in
computing dot-products between the pixels and the skewers.
These dot-product are highly independent and could be done
simultaneously. This leads to many ways to parallelize the
algorithm, but our approach targets the limited resources
available on real FPGA boards. A sequential version of the
Pixel Purity Index algorithm [8] is:

PIXELS[N][D]; // an image of N hyperpixels
SKEWER[K] [D]; // a set of K random skewers
PPI[N]; // the PPI result

// reset pixel purity index
for (n=0; n < N; n++) PPI[n]=0;
for (k=0; k < K; k++) // K skewers

{
dpmax=MIN_INT; dpmin=MAX_INT;
for (n=0; n < N; n++) // N pixels
{
// compute a Dot-Product
dp = 0;

for (d=0; d < D; d++)
dp = dp + SKEWERS[k] [d]*PIXELS[n] [d];
// detect extrema
if (dp > dpmax) { imax=n; dpmax=dp; }
if (dp < dpmin) { imin=n; dpmin=dp; }
}

// update PPI

PPI[imax]++;

PPI[imin]++;

}

For each skewer, N dot-products are computed to determine
the two pixels which produce the largest and the smallest
dot-product. The pixel index (PPI vector) is modified ac-
cordingly. A pixel n is a candidate to be a pure pixel if
PPI[n] has a high value.

From the above description it can easily be seen that all
the dot-products can be computed independently: there are
no dependencies between any of them. The parallelization
takes advantage of this by computing K S x NS dot-products
simultaneously, where KS and NS represent respectively
the number of skewers and pixels which can be processed in
parallel. This mapping to the hardware is shown in Figure
3.

The skewer data is represented as signed 3 bit data and is
input via a stream from the host. The pixel data is unsigned,

PIXEL [n][D-1] PIXEL [n+1][D-1]

PIXEL [n+NS-1][D-1]
time i i i
PIXEL[n][1] PIXEL[n+1][1]
PIXEL[N][0] PIXEL[n+1][0]

PIXEL[n+NS-1][1]
PIXEL[n+NS-1][0]

|

[T-albilgamars
[TIbgaImaNs
[IRISENERS]

[T-allt-sy:ileamars
[TlT-sy+luamars
[ollT-sy+lyamars

0

Figure 3: PPI algorithm architeture mapping to the
Wildforce board

fixed point, 8 bit data which is stored in off-chip memory.
We compare the most computationally intensive part of the
algorithm, the dot product (DP), for both versions of this
algorithm. The hand-coded version of the dot product maps
2 dot products at 25 MHz with an 22.5% area utilization of
the chip after place and route. The Streams-C version has
100% chip area utilization for two dot products at a speed
of 15 MHz. Since the main pipelineable loop contains “if”
statements, we are not able to pipeline the loop. However,
manual application of our extended pipeline algorithm to
the loop yields a schedule that delivers an output every clock
cycle. The hand-coded algorithm also has this throughput.
The hand-coded version was manually placed and the dot
product units were manually packed into CLBs. The hand-
coded version took six weeks of development time while the
Streams-C approach took four to five days, a productivity
speed up of 6 times.

3.4 K-means Custering Algorithm

The basic principle of the image clustering process is to
take an original image and to represent the same image using
only a small number of pixel values[9]. The K-means cluster-
ing algorithm performs this task by attempting to minimize
a cost function (the absolute value of a difference) over a
set of NB_CLASS cluster centers. First, the algorithm as-
signs pixels randomly to NB_CLASS classes, computes the
centers of the classes. There is a outer loop for a number of
iterations, N, which can be either fixed in advance or unde-
termined, and an inner loop which scans all the pixels. For
each pixel we check if it still belongs to its class. If not, the
pixel is moved to another class and the two centers, corre-
sponding to both the new and the old classes, are updated.
The number of pixels in a class is stored as well as the sum
accumulation necessary for recomputing the class centers.
The class centers are periodically updated every block of B
pixels.

The computation can roughly be split into three parts:

Max - ldxMax
Min - IdxMin

Front Filter

Figure 4: K-means hardware implementation

the distance calculation between a pixel and a class center,
the accumulator update and the center update. The most
time consuming part of the algorithm is the distance com-
putation between the pixels and the class centers, even if
the class center is fregently updated. The accumulator and
the class center updates represent only a small percentage
of the total computation time, especially for a partition into
a large number of classes. For example, for a class partition
of 32, the distance computation represents more than 99.6
% of the computation time.

Our architecture focuses only on parallelizing the most
time consuming part, that is the distance computation be-
tween the pixels and the class centers. The idea is to flow
a pixel stream through a linear array of processors. The
number of processors is equal to the number of classes. A
processor k computes a distance between the class k£ and the
current flowing pixel. The result is taken at the rightmost
end of the array by the filter process and corresponds to the
index class for which a minimum distance has been found.
The algorithm mapping to the Wildforce is shown in Figure
4.

Each processor has a small memory storing the class cen-
ter (a vector of NB_BAND values), and performs the follow-
ing computation:

index = my_processor_number;
while (! end_of_stream) {
dist = 0;
for (d=0; d<NB_BAND; d++) {
stream_read (pixel_value);
dist = dist + ABS(pixel_value - class_center[d]);
stream_write (pixel_value);
}
stream_read (left_dist, left_index);
if (dist < left_dist) {
left_dist = dist; left_index = index;
}

stream_write (left_dist, left_index);

The above code does not compute class centers: it only
determines the class number of a pixel. This information
is available at the rightmost end of the array each time a
pixel (its last vector element) comes out of the array. The
host processor is in charge of flushing the pixel stream to
the array, getting the results indicating the class number of
each pixel, and if a pixel has moved, recalculating the class
center accordingly.

The input data (pixel and class centers) comes to the
FPGA board from the host as previously described. The
Streams-C version implements one processor per this algo-
rithm. It utilizes 14 percent of the area on the chip at a

speed of 20 MHz. For a pipelined Streams-C implementation
of this algorithm, an output every clock cycle is expected.
In comparision, the hand-coded version uses 9.4 percent at
the same speed. The Streams-C application took one day of
development time, and the hand-coded version took one to
two weeks.

4. SUMMARY

The results of place and route with the Xilinx 4036 archi-
tecture are shown in Figure 5. The results for the pixel pu-
rity index, and the contrast enhancement implementations
show that Streams-C generally has a two to three times in-
crease in area utilization on the chip at about one half the
clock speed compared to the hand-coded versions. The time
savings for implementation is approximately 5 to 10 times in
favor of Streams-C. The efficiency of Streams-C compared
to hand-coding depends greatly on how the algorithm is par-
allelized and what operations are mapped to the hardware.
For example, the K-means clustering application shows that
functions such as addition or subtraction can be automated
rather efficiently by Streams-C, without much increase in
area utilization or clock speed compared to the manual im-
plementation. The Streams-C productivity increase for the
Kmeans implementation is a speed up of 12 times. Key
to the success of faster algorithm run-time is assessing the
algorithm, parallelizing the computationally expensive pro-
cesses, and mapping them to hardware. This was accom-
plished successfully with the Kmeans clustering method by
using the host to do part of the processing, and the hardware
to do the computationally expensive parts of the algorithm.

Operations such as multiplication are not optimized for

synthesis or place and route in this implementation of Streams-

C. For this case, manual implementation decreases area uti-
lization and improves speed, for example, in the poly-phase
filter application, Streams-C uses 37% of the total area of
the chip. Three multipliers are synthesized and one multi-
plier is optimized away by the compiler, otherwise the area
utilization would be almost double that of the hand-coded
version. In addition, Streams-C does not yet handle local
arrays without accessing off-chip memory which could make
a large improvement to area utilization and speed for algo-
rithms like the pixel purity index and contrast enhancement.
The continuing Streams-C compiler research will manage lo-
cal arrays internal to the chip.

The synthesis results for the Virtex 1000 architecture are
shown in Figure 6. The Virtex has 27,648 logic cells, 96x64
array of configuration logic blocks (CLBs), the functional el-
ements for constructing user logic. In comparison, the Xilinx
4036E has 3078 logic cells and 1296 CLBs. For technology
such as the Virtex series architecture, if your objective is
for fast turn around time for alternative implementations of
reconfigurable components, Streams-C benefits the user via
the development time savings. It is usually not feasible to
hand-code alternative implementations without such a tool.

The future version of the Streams-C compiler will han-
dle local, on-chip memory, pipeline loops with control flow,
arrays of processes on-chip, and variable length data type
declarations, all of which should help optimize the area uti-
lization and speed of an application.

Reconfigurable Computing is a well known speed up over
conventional software system implementations, for example,
the results of the Pixel Purity Index (PPI) [8] show the
FPGA implementation speed up of 80 times over the soft-

Xilinx 4036 Architecture
Streams-C VHDL Handcoded VHDL

Area | Speed | Time | Area | Speed | Time
% MHz | wks % MHz | wks
CE 55 20 1/2 18 40 4
PPF 37 40 1/2 27 40 2
PPI 100 15 1 22.5 25 6
DPs 4x2
Kmeans 14 20 1/4 9 20 1-2

Figure 5: Place and route results for the Xilinx 4036
on the Wildforce board comparing the Streams-C
versus handcoded VHDL.

Virtex V1000 Architecture
Streams-C VHDL Handcoded VHDL

Area | Speed | Area Speed
% MHz % MHz
CE 3 40 1 40
PPF 1 40 1 40
PPI 6 40 2 45
DPs 4x2
Kmeans | <1 40 <1 40

Figure 6: Synthesis results for the Virtex X1000
comparing the Streams-C versus the handcoded
VHDL .

ware implementaton. The objective of this study is to ana-
lyze the performance of the Streams-C compiler with respect
to optimized hand-coded designs for practical applications
in the image and signal processing domain. Four different
applications were choosen, in order to show that the paral-
lelization of the algorithm, and efficient hardware mapping
impacts the run-time speed of the application. Streams-C
benefits the user via faster development time, but area uti-
lization is the penalty.

This application study shows that C-to-hardware tech-
nology in conjunction with a parallel programming model
and efficient hardware libraries is within reach for eventual
production use. Our future work is directed toward a new
Streams-C implementation that will be available as mod-
ules within the SUIF compiler framework.> In addition to
restructuring the compiler phases to better exploit standard
optimizations, we plan to add support for arrays of processes
and streams and for block and CLB RAMS on a variety of
boards targeting the Virtex chip.

5. ACKNOWLEDGEMENTS

The application study was supported by Los Alamos Na-
tional Laboratory’s Deployable Adaptive Computing Sys-
tems (DAPS) program. The Streams-C compiler develop-
ment was primarily supported by the DARPA Adaptive
Computing Systems Program, as was the polyphase filter
algorithm. The hand-coding of PPI and K-Means was sup-
ported by a DoD grant to LANL.

3(see suif.stanford.edu)

6.

REFERENCES

[1] Joseph Arrowood. Comparison of filter banks for

signal detection. In LAUR Number 99-4551, Los
Alamos, NM, March 2000.

[2] Xilinx Corp.

http://www.xilinx.com /xilinxonline/jbits.htm. 1999.

[3] M. B. Gokhale, J. Frigo, and J. Stone. Parallel ¢

[4]

[5]

[11

[12

[13

[14

[15

]

]

]

programming of reconfigurable computers: the
Streams-C approach. In HPEC 2000, September 2000.
M. B. Gokhale and J. M. Stone. Co-synthesis to a
hybrid RISC/FPGA architecture. Journal of VLSI
Signal Processing Systems, 24, March 2000.

M. B. Gokhale, J. M. Stone, J. Arnold, and

M. Kalinowski. Stream-oriented FPGA computing in
the Streams-C high level language. In IEEE
international Symposium on FPGAs for Custom
Computing Machines, 2000.

Maya Gokhale, Janice Stone, and Edson Gomersall.
Co-synthesis to a hybrid risc/fpga architecture.
Journal of VLSI Signal Processing Systems,
September 2000.

Mary Hall et al. Defacto: A design environment for
adaptive computing technology. Proceedings of the 6th
Reconfigurable Architectures Workshop (RAW’99),
1999.

Dominique Lavenier, James Theiler, John Szymanski,
Maya Gokhale, and Janette Frigo. Fpga
implementation of the pixel purity index algorithm. In
SPIE, FPGAs and Reconfigurable Processors for
Computing and Applications, vol 4212, Boston, MA|
November 2000.

Miriam Leeser. Applying reconfigurable hardware to
segmentation for multispectral imagery. In HPEC
2000, Boston, MA, September 2000.

T. Maruyama and T. Hoshino. A ¢ to hdl compiler for
pipeline processing on fpgas. In FCCM 00, Napa, CA,
April 2000.

et. al. P. Banerjee. A matlab compiler for distributed,
heterogeneous, reconfigurable computing systems. In
FCCM 00, Napa, CA, April 2000.

J. Park P. Diniz. Automatic synthesis of data storage
and control structures for fpga-based computing
engines. In FCCM 00, Napa, CA, April 2000.

Eric Pauer, Paul Fiore, John Smith, and Cory Myers.
Algorithm analysis and mapping environment for
adaptive computing systems. FPGA2000, 2000.

S. Periyayacheri et al. Library functions in
reconfigurable hardware for matrix and signal
processing operations in matlab. Proc. 11th IASTED
Parallel and Distributed Computing and Systems
Conference (PDCS’99), November 1999.

Markus Weinhardt and Wayne Luk. Pipeline
vectorization for reconfigurable systems. In FCCM 99,
April 1999.

