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Abstract We discuss hardware/software co-
processing on o hybrid processor for a compute- and
data-intensive hyper-spectral 1tmaging algorithm, K-
Means Clustering. The experiments are performed
on the Altera Excalibur board using the soft IP core
32-bit NIOS RISC processor. In our experiments,
we compare performance of the sequential algorithm
with two different accelerated versions. We con-
sider granularity and synchronization issues when
mapping an algorithm to a hybrid processor. Qur
results show that on the Excalibur NIOS, a 15%
speedup can be achieved over the sequential algo-
rithm on images with 8 spectral bands where the
pizels are divided into 8 categories. Speedup is lim-
itd by the communication cost of transferring data
from external memory through the NIOS processor
to the customized circuits. Our results indicate that
future hybrid processors must either (1) have a clock
rate 10X the speed of the configurable logic circuits
or (2) include dual port memories that both the pro-
cessor and configurable logic can access. If either
of these conditions is met, the hybrid processor will
show a factor of 10 speedup over the sequential algo-
rithm. Such systems will combine the convenience
of conventional processors with the speed of config-
urable logic.

Keywords: configurable system on a chip, CSOC,
Excalibur, K-means Clustering, image processing

1 Introduction

Over the past ten years, it has been well docu-
mented that configurable logic processors com-
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posed of SRAM-based Field Programmable
Gate Arrays (FPGASs) can accelerate compute-
intensive operations by one to two orders
of magnitude over Pentium-class processors.
However, as more experience has been gained
with FPGA processing, it has also become
evident that there is much more to any al-
gorithm than a compute-intensive core. File
I/0O, outer loop management, and other house-
keeping tasks make up the bulk of the source
code. It is time-consuming to map these func-
tions onto hardware and usually not profitable
in terms of speedup - it is better to use hard-
ware to unroll an inner loop for the maximum
data flow rather than to map complex control
and I/O functions onto hardware.

However, the architecture of currently avail-
able FPGA computing platforms does not
lend itself easily to hardware/software co-
processing. FPGA boards typically communi-
cate with a processor via an I/O bus such as
PCI or VME. Not only is the I/O bandwidth
between hardware and software slow and pin-
limited, but the system overhead to set up a
transaction between the processor and FPGA
board is high. All these factors dictate that
as much of the computation as possible occur
in hardware, and that the granularity of trans-
action between hardware and software is both
large and deterministic (so that operations can
be scheduled), with minimal synchronization
between the two.

Recently, hybrid Configurable System on a
Chip (CSOC) architectures, proposed several



years ago ([8], [5], [9]), have begun to appear
as commercial offerings ([1], [10]). In contrast
to traditional FPGAs, these integrated systems
offer a processor and an array of configurable
logic cells on a single chip. On such systems,
it becomes feasible to have software and hard-
ware communicate at clock cycle latency rather
than over a slow I/O bus, speeding up syn-
chronization between the two. As a result, a
smaller granularity of operation should be pos-
sible in hardware as compared to the conven-
tional FPGA board co-processor.

As hybrid processors are still not readily
available, there has been to date little experi-
ence with mapping algorithms to these devices
and measuring performance. In this paper, we
present practical experience with using the Ex-
calibur NIOS system for a compute- and data-
intensive application in remote sensing, the K-
Means Clustering algorithm. We choose this
algorithm because it is readily parallelizable in
a variety of ways, and FPGA-based acceler-
ation of K-Means kernel loops has previously
been reported [7]. We experiment with map-
ping K-Means to a hybrid processor and evalu-
ate performance of two different mapping tech-
niques.

2 K-Means Clustering

The basic principle of image clustering is to
take an original image and to represent the
same image using only a small number of pixel
values. The goal of the K-Means algorithm
is to assign each pixel to one of a pre-defined
number NB_CLASS of classes. The assignment
is done by minimizing a cost function over the
set of NB_CLASS class centers, where the class
center is simply the average of pixel values cur-
rently assigned to the class. This iterative al-
gorithm compares each pixel to each class cen-
ter, finds the class center with minimal dis-
tance to the pixel, and then assigns the pixel
to that class. The algorithm may be run for a
fixed number of iterations or until no pixel has
moved to a new class.

The K-Means algorithm is typically applied

Figure 1: A Multi-Spectral Image

Assign pixels randomly to NB_CLASS classes
Compute the centers of the classes
Loop(N) For each pixel,

e Let C = class of the pixel

o Determine the class number K which has
the minimum distance to C

e if C is not equal to K, move pixel C to
Class K

Recompute the centers of the classes K and C

Figure 2: K-Means Clustering Algorithm

to multi- and hyper-spectral remote sensing
imagery. Figure 1 shows such an image.

In a multi- or hyper-spectral image, each
“pixel” is actually a “hyper-pixel,” a vector
with a component for each spectral channel
in the image. A representative hyper-spectral
image might contain 512 x 512 hyper-pixels,
where each hyper-pixel is a vector of length
224, and each vector component is 8 — 14 bits
long.

Figure 2 outlines the K-Means algorithm,
and Figure 3 shows the main K-Means loop
in C.

A loop iteration scans all the pixels. For
each pixel we check if it still belongs to its class.
If not, the pixel is moved to another class and
the two centers corresponding to both the new
and the old classes are updated. The number of
pixels in a class is stored as well as the sum ac-



1 while (pixel_move !=0) {

2 pixel_move = 0;

for (i=0; i<NB_PIXELS; i=i+B) {

4 for (b=0; b<B; b++) {

5 min = MAX_INT;

6 /* compute distance: pixel <=> all classes */
7

8

w

for (k=0; k<NB_CLASS; k++) {
if (N_CENTER[k]'=0) {

9 dist = 0;

10 for (d=0; d<NB_BANDS; d++)

11 dist = dist +

12 ABS (PIXEL[i+b][d] - CENTER[k][d]);
13 /* find min dist and associated class# */
14 if (x<min) { min = dist; idx[b] = k; }
15 T

16 }

17 }

18 for (k=0; k<NB_CLASS; k++) change[k] = false;
19 for (b=0; b<B; b++) {

20 if (CLASS[i+b]!=idx[b]) {

21 pixel_move ++;

22 k = CLASS[i+b]; N_CENTER[k]--;

23 change[k] = true;

24 for (d=0; d<NB_BANDS; d++)

25 ACC[k][d] = ACC[k][d] -

26 PIXEL[i+b] [d];

27 k = idx[b]; CLASS[i+b] = k; N_CENTER[k]++;
28 change[k] = true;

29 for (d=0; A<NB_BANDS; d++)

30 ACC[k][d] = ACC[k][d] + PIXEL[i+b][d];
31 T

32 }

33 for (k=0; k<NB_CLASS; k++)

34 /* recompute centers if needed */

35 if (N_CENTER[k]!=0 && change[k]==true) {
36 for (d=0; d<NB_BANDS; d++)

37 CENTER [k] [d] = ACC[k] [d]/N_CENTER[k];

38 T

39 }

40 }

Figure 3: K-Means C Code

cumulation necessary for recomputing the class
centers. In our implementation, the class cen-
ters are periodically updated every block of B
pixels. The cost function is an approximation
described in [2] well suited to our data set and
is computed as the absolute value of a differ-
ence. This cost function is well suited to to-
day’s configurable hardware. In software, the
squared difference is usually used.

The computation can be split roughly into
three parts: the distance calculation between
a pixel and a class center, the accumulator up-
date, and the center update. In [6], we report
the results of profiling the K-Means algorithm.
We have found that the most time consuming
computation is the distance calculation that
compares each pixel value to each class center
(see lines 3 — 16 in Figure 3). In the case of 32
classes, this loop consumes more than 99.6% of
the computation time. Thus, this calculation
is the natural candidate for acceleration.

There are many ways to accelerate K-Means
on configurable logic. Two different accelera-
tion approaches have been reported in [7] and
[6] (see [3] for a summary of[6]). Both methods
put the distance calculation (line 11 of Figure
3) in hardware. [7] pre-loads the image into lo-
cal memory on the FPGA board and performs
all computation except the final center mean
calculation in hardware. Thus the entire im-
age must fit in local memory. [6] streams the
image pixels through board, and performs only
the distance calculation in hardware. It can
handle arbitrary size images and scales well to
a large number of classes. It incurs commu-
nication overhead in repeatedly streaming the
image from the processor to the hardware.

3 Mapping K-Means onto a
Hybrid Processor

Our hybrid processor model is shown in Fig-
ure 4. There is a RISC processor with a vari-
able number and size of busses connecting it
to configurable logic. The RISC processor and
configurable logic share memory. The config-
urable logic consists of a “sea of gates” along
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Figure 4: Abstract Hybrid Processor Architec-
ture

with a collection of small embedded memory
modules. We refer to a hardware design in the
configurable logic as the “user logic.” We as-
sume that the processor and user logic run at
the same clock speed and that a word may be
transmitted between processor and user logic
in one clock cycle. The NIOS Excalibur ap-
proximates this model, with some important
differences. On the NIOS, the user logic can-
not access the Instruction and Data SRAM di-
rectly. While theoretically the user logic and
processor can exchange data in one clock cy-
cle, in reality we measure O(10) clock cycles to
send a single 32-bit number from NIOS proces-
sor to user logic (see Section 3.1 below).

3.1 Iteration 1: Speeding up Dis-
tance Calculation

We approach the problem of mapping K-Means
to a hybrid processor incrementally. Since the
most time consuming operation is the distance
calculation loop, we first map the kernel of that
loop to hardware, with all the other code re-
maining in software. This highlights one of
the important advantages of a hybrid proces-
sor (see [4] for a more detailed discussion of this
point), namely that it is easy with such an ar-
chitecture to incrementally insert hardware ac-
celeration into a conventional program. We re-
place a single statement in the C program with
a call to the configurable logic. The hardware
is a combinational logic circuit with input ports

consisting of the distance, the current pixel and
current center. The circuit performs the indi-
cated subtraction, abs function and accumu-
lation and returns the updated variable dist.
Figure 5 shows both the modified C code and
the VHDL for this version of the algorithm.!

In this example, lines 11 and 12 of Figure 3
are replaced by calls to send the data to the
configurable logic and to retrieve the result.
The data is sent and received through a set
of user-defined busses (see lines 41 — 45).

This hardware logic takes less than 1% of the
chip and does not affect the clock frequency of
the chip. On the Excalibur, the 32-bit NIOS
plus the user logic occupy 22% of the chip, and
the clock frequency (fMax) is 31.71. Since we
have previously noted that the distance calcu-
lation by far dominates the computation time,
we might expect the hardware acceleration of
this key computation to significantly speed up
the K-Means run time. There are two sub-
tracts and one add in the distance calculation.
The RISC processor takes at least one clock
cycle to execute each of these instructions. All
three are done in one clock cycle in the user
logic.

In this experiment, the sequential and “ac-
celerated” versions were roughly the same
speed. For 64 pixels, with 8 classes and 8
bands, the accelerated version was 15% faster
than sequential. When the number of pixels
was increased to 224 with 224 classes, the se-
quential algorithm was 5% faster. This is due
to a combination of factors. First, although the
arithmetic operations (subtracts and an add)
have been accelerated, we have added a cost by
communicating the distance, center, and pixel
values to the user logic and reading back the
updated distance. As the amount of data to be
sent to the user logic is increased, the commu-
nication overhead begins to dominate the run
time.

In an experiment to quantify the cost of
sending a single 32-bit value from processor to
user logic, we determined that on the Excalibur

! Although the send and receive are shown as sepa-
rate function calls, the calls were manually inlined when
measuring speed.



Modified C Code:

11 send_data(0,CENTERS,dist,PIXELS);
12 dist = get_result();

41 EP_PIO0 *dist_out = (EP_PI0 *) NA_dist_out;
42 EP_PI0 *ul_reset = (EP_PI0 *) NA_Reset;
43 EP_PI0 *center = (EP_PI0 *) NA_center;
44 EP_PI0 *dist_in = (EP_PI0 *) NA_dist_in;
45 EP_PI0 #*pixel = (EP_PI0 *) NA_pixel;

46

47 int send_data(rst, cent, din, pix)

48 int rst, cent, din, pix;

49 {

50 ul_reset->EPR_PIQData = rst;

51 center->EPR_PI0Data = cent;

52 dist_in->EPR_PIOData = din;

53 pixel->EPR_PIOData = pix;

54 }

55

56 int get_result()

57 {

58 return (dist_out->EPR_PIOData);

59 }

VHDL for Distance Calculation:

dist_process: process(Clk, Reset)
variable p_i: integer;
variable c_i : integer;
variable d_i : integer;
begin
if (Reset = ’1’) then
dist_out <= "0000000000000000";
elsif rising_edge(Clk) then
p-i := conv_integer(pixel);
c_i := conv_integer(center);
d_i := conv_integer(dist_in);
if pixel>center then
dist_out <=

conv_std_logic_vector(d_i + (p_i - c_i),16);

else
dist_out <=

conv_std_logic_vector(d_i + (c_i - p_i),16);

end if;
end if;
end process;

Figure 5: Hardware Acceleration of Distance
Calculation

with a 32-bit NIOS processor, it takes 11 clock
cycles? to send one 32-bit value from processor
to user logic using memory-mapped I/O, which
is a 12MB/s rate assuming a 33MHz clock for
both processor and user logic. This communi-
cation cost more than offsets the gain of per-
forming multiple arithmetic operations in par-
allel. Second, even if we could communicate
a word between processor and user logic in a
single user logic clock cycle by increasing the
processor clock speed by a factor of 10, there
is still a significant amount of address calcu-
lation code in the innermost loop that is per-
formed sequentially. Thus the fraction of par-
allel code relative to the amount of sequential
code is quite small, which, by Amdahl’s Law,
is a limiting factor to speedup.

Our conclusion from this experiment is that
communication cost continues to be critical to
the granularity of the custom instruction. The
speed of communication can be increased by
increasing the clock speed of the processor rel-
ative to the user logic.

3.2 Iteration 2: Parallelizing across
Classes

Our second approach focuses on larger granu-
larity with a more global parallelization of the
distance calculation by unrolling the loop over
all the classes on lines 7-16. The idea is to
flow the pixel stream through a linear array of
cells, where the number of cells is equal to the
number of classes. A cell k& computes the dis-
tance between its class £ and the current flow-
ing pixel. It also updates the current “best”
class that has been found for each pixel (i.e.,
the class with minimum distance to the pixel).
The new class computed for the pixel is re-
turned to the processor, and new class centers
are computed. Periodically, a new set of cen-
ters is streamed to the array of cells. The cell
array is shown in Figure 6.

Each processor has a small memory storing
the class center (a vector of NB_BAND values),
and performs the following computation:

2This includes 2 wait states.
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Figure 6: Linear Array Implementation

index = my_processor_number;
while (! end_of_stream) {
dist = 0;
for (d=0; d<NB_BAND; d++) {
stream_read (pixel);
dist = dist + ABS(pixel - center[d]);
stream_write (pixel);
}

stream_read (left_dist, left_index);
if (dist < left_dist) {

left_dist = dist; left_index = index;
}

stream_write (left_dist, left_index);

The input data (pixels and class centers) are
written from the processor to the user logic
through a set of user-defined busses, similar to
the method shown in Figure 5.

In this experiment, the accelerated version
showed an 11% speedup over the sequential al-
gorithm. Once again, the cost of communicat-
ing the image to the user logic, at 11 cycles
per word, was the dominating factor that pre-
vented greater speedup. Although there was
greater parallel activity in this version than ei-
ther the sequential version or our first iteration,
the high cost of sending the pixel array to the
user logic was the limiting factor.

We have compiled this hardware version
of the K-Means distance calculation (imple-
mented with 32 classes or cells) for both the
Altera APEX20K200 as well as the Xilinx Vir-
tex. The table in Figure 7 shows the size of the
user logic on the Altera chip as well two Virtex
chips. Each cell holds 224 spectral channels for
the class center it represents.

FPGA Gates | %Usage | Speed
APEX20K200 | 526K 53% 50 MHz
Virtex V400 468K 70% 25 MHz
Virtex V1000 | 1.124M 28% 41 MHz

Figure 7: Comparison of K-Means Hardware
on Altera and Xilinx (implemented with 32
Classes)

4 Conclusions

We have demonstrated the mapping of a data-
and compute-intensive algorithm, K-Means
Clustering to a hybrid processor consisting of
a RISC processor augmented with configurable
logic. We have experimented with two ap-
proaches to accelerating the K-Means inner
loop with maximum speedup achieved of 15%.

One conclusion we draw from this experi-
ment is that speedup can only be gained by
the P-RISC approach of substituting hardware
for short segments of sequential instructions if
there is very fast communication between pro-
cessor and user logic. This is especially true if
the cost of reconfiguration is factored in, which
we did not consider in this experiment.

The higher pay-off approach is to paral-
lelize in hardware at the loop level and to put
overhead operations such as address calcula-
tion on the hardware. The overhead of com-
municating data between the processor and
user logic remains the primary impediment to
higher speedup. Limitations of the clock speed
of the soft processor core and memory architec-
ture of the Excalibur NIOS development board
are responsible for the measured overhead.

These factors can be remedied by

e using a hard IP core processor that is
clocked at 10X the clock rate of the user
logic

e separate data and instruction memory
e instruction cache

e dual ported memory shared by processor
and configurable logic



e multiple memory banks.

With the dual ported memory, it would be
possible to pass to the user logic simply the
addresses of the pixel and center arrays, and
let the hardware perform pipelined fetch of the
pixel data directly. Center update could still
be done by the software, with the new class
centers written directly to the shared memory.
With this approach it is possible for the hybrid
chip to deliver one to two orders of magnitude
speedup over software.

Extrapolating to the Virtex 1000 PowerPC,
we can fit 96 classes. If the memory commu-
nication can proceed at 40MB/sec (compara-
ble to 32-bit PCT DMA mode), a speedup of
approximately 200 [6] can be realized over the
software version. This communication rate can
either be achieved by running the processor at
400MHz or by providing a path for the user
logic to access memory concurrently with the
processor.

Thus, despite the modest measured results

from the Excalibur NIOS, we believe it is pos-
sible for the performance of a hybrid processor
to be orders of magnitude faster than a conven-
tional processor. However, careful attention to
the system architecture is necessary to realize
these benefits.
Acknowldegements: We are grateful to
Konstantin Borozdin for helping compile and
debug version 1 of the K-Means to the Excal-
ibur.

References

[1] Altera Corporation. Excalibur.
http://www.altera.com/products/devices/
excalibur/exc-index.html, 2001.

[2] M. Estin, M. Leeser, J. Theiler, and J. Szy-
manski.  Algorthmic Analysis of K-Means
Clustering for Hardware. ACM FPGA 2001,
2001.

[3] J. Frigo, M. Gokhale, and D. Lavenier. Evalu-
ation of the Streams-C C-to-FPGA Compiler:
An Applications Perspective. ACM FPGA
2001, 2001.

[4] M. B. Gokhale and J. M. Stone. Co-synthesis
to a hybrid RISC/FPGA architecture. Jour-

[5]

[7]

[8]

[9]
[10]

nal of VLSI Signal Processing Systems, 24,
March 2000.

J. R. Hauser and J. Wawrzynek. GARP: A
MIPS processor with a reconfigurable copro-
cessor. In J. Arnold and K. L. Pocek, edi-
tors, Proceedings of IEEE Workshop on FP-
GAs for Custom Computing Machines, Napa,
CA, Apr. 1997. To be published.

D. Lavenier. FPGA Implementation of the K-
Means Clustering Algorithm for Hyperspec-
tral Images. Los Alamos National Laboratory
LAUR 00-3079, 2000.

M. Leeser. Applying reconfigurable hardware
to segmentation for multispectral imagery. In
HPEC 2000, Boston, MA, Sept. 2000.

R. Razdan
and M. D. Smith. A high-performance mi-
croarchitecture with hardware-programmable
functional units. In Proceedings of the 27th
Annual International Symposium on Microar-
chitecture, pages 172-80. IEEE/ACM, Nov.
1994.

C. Rupp et al. The Napa Adaptive Processing
Architecture. FCCM 1998, Apr. 1998.

Xilinx ~ Corporation. Virtex/powerpc.
http:/ /www.zilinz. com/prs_rls/ibmpartner.htm,
2000.



