Experimental evaluation of place-and-route
of regular arrays on Xilinx chips

Erwan Fabiani and Dominique Lavenier
IRISA
Campus de Beaulieu
35042 Rennes Cedex
France

Abstract This paper presents a synthesis of
several experiments to map regular arrays onto
Xilinz chips. We show that constraining only the
placement results in a limited place-and-route run-
time gain under timing constraints. The analysis
covers two Xilinz families (XC4000 and Virtex),
highlighting the growing influence of the routing
step and the necessary need of advanced tools for
controlling the routing process.

Keywords: structural placement, regular arrays

1 Introduction

When implementing a hierarchical structured
design on a FPGA component, one must de-
cide between letting the vendor tools do it alone
or constraining them with layout directives de-
duced from the design structure. This method
usually consists of attaching relative or abso-
lute locations to the design. This is done at 2
levels: (1) at a logic block level to place com-
plex components (like RAM blocks or multipli-
ers); (2) at a component level to place nearby
components that are tightly connected. The
expected result is an increase of the clock fre-
quency due to the reduction of routing delays,
as well as a fast place-and-route step since no
placement has to be found.

We call such a placement a “structural place-
ment” since it takes into account the design
structure, as opposed to vendor placement
which flattens the design into logic blocks. In
the last decade, several authors using struc-

tural placement on FPGA have observed ben-
efits over vendor tools, both for frequency and
place-and-route runtime criteria ([1] [2] [3]).

Regular arrays mostly benefit from struc-
tural placement. They consist of replicated
identical cells and the placement method is s-
traightforward: it consists, for a cell, in find-
ing a structural placement, then replicating it
according to the layout topology of the array
[4]. This method has been extensively investi-
gated in the COSI team at IRISA, especially
for linear arrays. The purpose is to provide
a fast place-and-route tool for implementing
regular arrays generated from automatic par-
allelization of nested loops [5].

However, the last few years have seen impor-
tant evolutions in the FPGA architectures, as
well as in the synthesis tools. In order to mod-
erate the impact of the increasing size of FPGA
components over the design cycle time, vendors
have made a huge effort to improve the place-
and-route tool. For instance, Xilinx claims that
their latest tool (3.1 release 2000) has a run-
time speedup of 16 compared to the release of
1996 [6]. Moreover, tools now take structural
criteria into account unlike the situation in the
past. Xilinx tools, again, now detects register-
s by their names and is able to map them up
to have contiguous bits in a same logic block
[7]. The architectural evolution has been prin-
cipally concentrated on routing resources [8],
and Xilinx even claims that the design cycle
time criterion was taken into account when the
Virtex architecture was created.

Last year, S. Singh was foreseeing the “Death



of RLOC” [9]. He was showing that benefits of
structural placement were not as interesting as
in the past for both runtime and frequency.

In this context, we have to wonder if imple-
menting regular arrays using structural place-
ment is still profitable considering the evolu-
tion of FPGA architecture and synthesis tool-
s. Actually, the usual method to implement
a regular array with structural placement only
focuses on the placement step: the array place-
ment is fully constrained, but there is no con-
trol on the routing step. In addition, the as-
sumption that a smart placement could provide
a significant reduction of the routing time is not
clearly demonstrated, in spite of the numerous
experiments we have done.

This article aims both to evaluate the lim-
ited benefits of a structural placement of reg-
ular arrays, and to quantify the evolution of
the place-and-route runtime between past and
current FPGA technologies. The rest of the
paper is organized as follows: the next section
presents the experimental context. Section 3
describes the set of experiments we have per-
formed on a Xilinx Virtex XCV800 component
to measure the place-and-route time, and to
estimate the clock frequency with and with-
out placement constraints. Section 4 compares
the place-and-route time between the current
Xilinx family (Virtex) and the previous one
(XC4000). Section 5 concludes and points out
the needs for better controlling the routing pro-
cess.

2 Experimental context

Our experiments consist basically of comparing
the results of two implementations: a placed
one and an unplaced one. As we want to com-
pare the maximal potential runtime improve-
ment that one can obtain with a structural
placement, we focus on implementing arrays
with as many cells as possible.

In the placed implementation, one cell is
structurally placed to fit in a minimal area rect-
angular shape. It is also placed to minimize the
critical path delay by bringing closer compo-

nents that are on the critical path. This place-
ment is then replicated (and mirrored as and
when needed) for all the cells. In the unplaced
implementation, no directive is added to the
net-list: the placement is fully done by the ven-
dor tool.

For the two implementations, the net-list
(with or without placement) is placed-and-
routed by the vendor tool. The runtime of
these two steps and the estimated critical path
delay are measured. All the comparisons have
been made with and without ¢iming constraint
as this parameter can have a very huge impact
on the time for placing-and-routing a circuit.
In order to have an standard way of comparing
its influences, we use a normalized scale: for
each design, the base is equal to the minimal
timing constraint (i.e. the maximal frequency
constraint) the vendor tool is able to satisfy for
placing-and-routing the unplaced implementa-
tion. We made experiments for various timing
constraints up to 3 times this constraint.

Three designs have been used for our exper-
iments:

e A unidirectional convolution with a con-
stant coefficient multiplier. Each cell has
2 registers, an adder and a constant coef-
ficient multiplier. This design is tested for
4, 8 and 16-bit datapath (named conv4,
conv8 and convl6 in the following).

e A systolic filter for DNA similarity search
[10]: A cell consists of 4 comparators,
4 multiplexors, 4 adders and 3 registers,
with a 12-bit data width.

e A sgystolic array for computing the k-
means clustering algorithm for hyper-
spectral images [11]: A cell includes 3 com-
parators, 3 adder/subtracter, 4 multiplex-
or, 6 registers, a 224 by 8 bit Ram memory,
on a 16 bits and 8 bits datapath.

These three designs are all linear systolic ar-
chitectures. However, their implementation on
a FPGA component requires a 2D organization
and the inter-cell locality is preserved by means
of a snake-like mapping as explained in [4].



3 Placing regular arrays on a
Virtex FPGA

To evaluate structural placement, we measured
the ratio between placed and unplaced designs
according to three criteria:

e Place-and-route time: if the ratio is greater
than 1, then the place-and-route with
placement is faster (fig l.a). It ap-
pears that for some simple designs (con-
v8, convl6), there is not much improve-
ment induced by placement. On the other
hand, for more complex designs (DNA and
kmean) the place-and-route time can be
significantly speeded-up, especially if no
timing constraints are specified.

® Routing time: it is important to know if
a structural placement also provides rout-
ing time improvement. Figure 1.b con-
firms the previous experiment: the bet-
ter the routing time, the better the overall
place-and-route runtime. This shows that
a structured placement of a regular ar-
ray does not provide a faster routing step.
Worse yet, in some cases, the routing time
may even increased!

e Delay: the ratio shows whether structural
placement improves the clock frequency.
Figure 1.c shows that designs with place-
ment constraints are always faster. It is
particularly true when there are no timing
constraints. In fact the delay of the de-
signs with placement constraints are not
very effectively reduced using timing con-
straints.

From these experiments, one can easily de-
tect when regular arrays benefit from structural
placement: when no timing constraints are set.
In that case, the clock frequency is increased
and the overall place-and-route stage takes the
shorter time.

Hence, using timing constraints with a struc-
tured placement seems to be of poor interest
when implementing regular arrays on current
Xilinx FPGA component. This contradicts

previous results we had from the XC4000 fam-
ily. Since the overall speedup comes mainly
from the placement step, the balance between
the placement and the routing step has a great
influence. The longer the placement step, the
better the overall runtime improvement. To see
if this place-and-route runtime ratio is correlat-
ed with the FPGA architectures, we compared
this ratio between past (XC4000) and current
(Virtex) FPGA technology.

4 XCV800 and
Place-and-Route
Comparison

XC40250

In this section we compare the place-and-route
time for various unplaced designs both on a
XCV800 and a XC40250XV component. Those
two components have approximately the same
number of LUTs (the Virtex XV800 is 10%
bigger) and can be placed-and-routed with the
same tool (Xilinx PAR 3.1). Those two archi-
tectures represent the evolution that occurs in
FPGA architecture. The XC40250XV is the
biggest component of the Xilinx XC4000 family
while the XCV800 is a middle size componen-
t of the Virtex family. The principal architec-
tural difference between these two architectures
is the amount of available routing resources: a
Virtex LUT can access approximately 1.5 more
routing resources than a XC4000 LUT.

For comparison purpose, the three design-
s presented in the previous section have been
placed-and-routed on the XC40250XV with no
placement constraints. Figure 2 gives the ratio
between the placement time and the routing
time for each placed-and-routed design both on
the XC40250XV and the XCV800.

It appears that this ratio is often signifi-
cantly higher for designs implemented on the
X(C40250XV, whatever the timing constrain-
t. This is particularly true for array with fine
grain cells, as conv4 or conv8. The single excep-
tion is the kmean without timing constraints.

We may now wonder whether this effect is
due to a faster placement or a longer routing
time. These measures are not detailed here,



aEnc@3I02ol7EmisSmli 25 el 125 ol

ratio

conv4 conv8 conv1é DNA kmean

(a) Improvement in total place—and-route runtime between a placed and an unplaced design.

[ercm3ozoi75mismi B w25 Al

354

25

ratio

05

conv4 conv8 conv1l6é DNA kmean

(b) Improvement in routing runtime alone between a placed and an unplaced design.

[arc w302 m175mismi 5 w1125 |1 ]

25 1

ratio 15 1

05 4

conv4 conv8 conv1l6é DNA kmean

(c) Improvement in critical path delay between a placed and an unplaced design.

Figure 1: Comparison of place and route runtime, routing runtime and critical path delay between
linear array implementation done with or without placement constraints. Implementations are done
on a Xilinx Virtex XCV800 with timing constraints varying from 1 to 3 time the minimal timing
constraint, or without timing constraints (ntc).



@Entc @3 020175 M1.5@1.25 m1.125 @1

ratio 4 H

XC40250 XCV800 XC40250 XCV800 XC40250 XCV800 XC40250 XCV800 XC40250 XCV800

conv4 conv8

convl6 DNA kmean

Figure 2: Comparison of place/route runtime ratio for designs on XCV800 or XC40250XV, for

various timing constraints.

but globally the XCV800 placement is divided
by an average factor of 15, while the routing
time is only divided by an average factor of 6.
Clearly, the decreasing time of the place-and-
route step is mainly due to a faster placement
operated by the Xilinx tools.

However those measures should be mod-
erated by the size of the two architectures:
although the XC40250XV and the XCV800
have comparable number of logic blocks, the
X(C40250XV should be regarded as one of the
bigger sized FPGA of the XC4000 family, that
is to say the maximal reasonable amount of
logic that can be implemented regarding the
X(C4000 family routing architecture. On the
other hand the XCV800 is a middle size com-
ponent of the Virtex family (30% of the bigger
component), and does not reach the amount of
critical logic a single component of this family
can fit.

5 Conclusion
In this article the current benefits of struc-

tural placement on regular arrays have been
evaluated using a middle size component of

the Xilinx Virtex family. It appears that, al-
though structural placement provides interest-
ing gains in clock frequency, it cannot provide a
significant time saving for the place-and-route
step. This is explained by the fact that a smart
placement does not have much influence on the
routing step. Moreover, when comparing the
implementation of similar designs on an older
Xilinx architecture, it appears that the fraction
of time spent in the placement step decreases.
The conjugation of these two factors tends to
weaken the efforts to place a regular array for
reducing the place-and-route time.

However, the structural placement of regular
arrays, as we investigated it until now, only
partially exploits regularity: the regularity of
the routing itself is not exploited. Obviously,
if all the cells of an array can be placed with
the same pattern, then their internal routing
could follow identical features. There are no
theoretical reasons forbidding to replicate the
cell routing inside a regular structure.

Hence, the fundamental issue in reducing the
place-and-route time would be the ability to
find the placement and the routing of one cell
and then to replicate it over the reconfigurable
structure. Such a method requires the solution



to three technical problems : (1) location inde-
pendent routing (i.e. a routing that could be
reproduced in all locations of the FPGA), (2)
confined routing (i.e. a routing that do not ex-
ceed a perimeter devoted to the cell routing),
(3) replication of such a routing.

The first problem constrains FPGA routing
architecture : it implies that the routing re-
sources are uniform over all the FPGA com-
ponent, so that any implementation of a net
could be reproduced in any location of the
FPGA component. For current Xilinx Virtex
architecture, this assertion is true. The second
need deals with the availability of “routing con-
straints” provided by vendor tools. Actually,
directives to constraint a placement in a de-
fined logic block area exists, but there is no
way to constraint the routing resources in such
a perimeter. The third need could be current-
ly implemented through the creation of hard
macro. The Xilinx Fpga Editor tool permits to
save a design as a hard macro, with a fixed
placement and routing. Such a hard macro
could then be instantiated as any other com-
ponent in a HDL description.

Thus we assert that applying also the princi-
ple of identical implementation of cells for the
routing step would reduce significantly its run-
time. But such a method is not viable with-
out the possibility of constraining routing re-
sources, as it is done for placement. In ad-
dition, such routing constraints would also be
useful in other FPGA application domains: to
be able to implement components with a fixed
routing perimeter will allow the use of pre-
routed IP component in a design without rout-
ing conflicts. Such routing constraints will also
facilitate the FPGA partial runtime reconfig-
uration, since it guarantees that the routing
resources used by a reconfigured area of the
FPGA would not result in a routing conflict
with other areas.

References

[1] A. Koch. Regular datapath on Field-
Programmable Gate-Arrays. PhD thesis,

Technical University Braunschweig, 1997

[2] T. J. Callahan, P. Chong, A. DeHon
and J. Wawrzynck. Fast module mapping
and placement for datapath in fpgas. In
ACM/SIGDA International Symposium on
Field Programmable Gate Arrays ACM,
1998

[3] J. M. Emmert, A. Randhar and D.
Bhatia. Fast Floorplanning for fpgas. In 8th
International
Workshop on Field Programmable Logic
and Applications, Talin, Estonia, 1998

[4] E. Fabiani, D. Lavenier. Placement
of Linear Arrays. In 10th International
Workshop on Field Programmable Logic
and Applications, Villach, Austria, 2000

[5] E. Fabiani, D. Lavenier and L. Perraudeau.
Loop Parallelization on a Reconfigurable
Coprocessor. In WDTA’98 : Workshop on

Design, Test and Applications, Dubrovnik,
Croatia, 1998

[6] Xilinx. Alliance Series Development System
Overview, www.xilinx.com, 2000

[7] Xilinx. Development System Reference
Guide, 2000

[8] F. de Dinechin. The price of routing in
FPGAs. Journal of Universal Computer
Science,vol. 6, pp. 227-239. Feb. 2000.

[9] S. Singh. Death of the RLOC 7. In
IEEE Symposium on FPGAs for Custom
Computing Machines, 2000

[10] P. Guerdoux-jamet, D. Lavenier. Systolic
Filter for fast DNA Similarity Search.
In ASAP’95: International Conference
on Application Specific Array Processors,
Strasbourg, France, July 1995

[11] D. Lavenier. FPGA Implementation of the
k-means Clustering Algorithm for Hyper-
Spectral Images. Los Alamos Unclassified
Report 00-3079, July 2000



