Mutable Functional Units and Their Applications on Microprocessors *

Yan Solihin!, Kirk W. Cameron?, Yong Luo®, Dominique Lavenier?, Maya Gokhale®
L University of Illinois at Urbana-Champaign
2 University of South Carolina
3 Intel Corporation
4 IRISA/CNRS
5 Los Alamos National Laboratory
solihin@cs.uiuc.edu, kcameron@cse.sc.edu, yong.luo@intel.com, lavenier@irisa.fr, maya@lanl.gov

Abstract

Functional units are the heart of microprocessors as
they execute binary instructions of a program. Current
microprocessors typically have several types of functional
units. In this paper, we propose a new functional unit
that combines a floating-point adder and an integer arith-
metic and logic unit into a single unit. This functional
unit reconfigures itself at run-time to serve different in-
structions from the program instruction stream. We call
such units mutable functional units or MFUs. MFUs
can be used in microprocessors to improve functional
unit utilization, reduce power consumption, and to im-
prove performance without adding extra functional units.
MFUs only require minor modifications to the ezisting
floating-point adder design. We show that overheads of
reconfiguration are small, typically 0 to 1 clock cycle, and
at most 2 clock cycles. We demonstrate how integration
with a typical current microprocessor can be achieved.
This integration allows speedups of non-numerical ap-
plications by 8% to 14% while keeping the number of
functional units constant. We also show that various
enhancements to the base architecture that increase the
instruction fetch rate affect the speedups positively.

1 Introduction

Functional units are the heart of microprocessors as
they execute binary instructions of a program. Current
microprocessors typically have several types of functional
units to execute different types of instructions: inte-
ger arithmetic and logic unit (ALU), integer multiplier,
integer shifter, floating-point adder, multiplier/divider,
square root units, etc. Today microprocessors exploit
instruction level parallelism (ILP) by fetching and exe-
cuting several instructions in the same clock cycle at dif-
ferent functional units. Functional units may consume a
significant portion of power consumption in current mi-
croprocessor chips. These drawbacks will be even more
pronounced in future processors where there may be a
large number of functional units per chip such as the
IBM BlueGene which may have well over 300 functional
units per chip [2].

*This work is supported by Los Alamos National Laboratory
under grant LDRD ER 2000022. Preliminary idea of this paper
appears in [3]

One type of resources that is often underutilized are
floating-point related resources, which include floating-
point units, registers, and reservation stations. Non-
numerical applications usually have very few floating-
point computation, and, as a result, the floating-point
resources are mostly idle. When idle, the floating-point
resources consume power and waste die area. To reuse
floating-point resources, the first modification is to en-
able the floating-point units to execute integer instruc-
tions. In this paper, we propose to extend floating-point
adders with the capability to execute integer instruc-
tions. Floating-point adder already contains most of the
hardware needed for integer execution. Simply extend-
ing the operand width and adding a few switches enable
the units to be “reconfigured” to execute different types
of instruction. We call these units mutable functional
units or MFUs, and the reconfiguration process as muta-
tion. To exploit MFUs, we need to mutate them to adapt
to the program’s needs during its execution. Thus, the
mutation must happen at run-time with low overhead.
We show that this is the case, where the mutation over-
head is at most 2 clock cycles.

We also demonstrate how integration of the MFU
with microprocessors is possible, and evaluate it on a
specific platform of a popular superscalar processor, the
MIPS R10000. In this platform, we keep the number
of functional units constant, and replace the processor’s
floating-point adder by an MFU to increase its utiliza-
tion for non-numerical applications. We show that the
integration can be very simple and require relatively lit-
tle new hardware without impacting the clock cycle fre-
quency of the processor. Using a cycle accurate micro-
processor simulator, the extra resource provided by the
MFU for non-numerical applications allows speedups of
the applications by 8% to 14%. We also show that vari-
ous enhancements to the base architecture that increase
the instruction fetch rate affect the speedups positively.

The rest of this paper is organized as follows: Sec-
tion 2 describes related works. Section 3 describes the
design of the mutable functional units. Section 4 de-
scribes the the integration of the MFU in microproces-
sors, with a specific example of the MIPS R10000. Sec-
tion 5 describes evaluation environment of the study and
Section 6 discusses the evaluation results on both base
and enhanced R10000 architectures. Finally, Section 7
presents conclusions and future work.

2 Related Work

To achieve reconfigurability, people have proposed us-
ing reconfigurable fabric to augment the capability of a
conventional processor [7, 6, 13, 10, 11]. Using reconfig-
urable fabric significantly increases the complexity of the
compiler, the hardware integration, and the synchroniza-
tion between the fabric and the main processor. Since
our reconfigurability feature only involves switching be-
tween floating-point and integer execution, we choose to
use a few simple programmable switches in the functional
unit instead of using reconfigurable fabric.

A hardware component that can execute both integer
and floating-point instructions was mentioned in [9]. No
functional unit design was presented and it is not clear
whether the component is a single functional unit or a
group of integer and floating-point units. In a further
study [5], the existence of such functional or group of
functional units were assumed and performance was im-
proved on superscalar architectures utilizing these units.
Modifications to the instruction sets were added, and
the compiler must perform grouping of integer instruc-
tions: one group, containing instructions with their de-
pendence chain, is routed to these units; and another
group goes to traditional integer units. In our study, we
present the actual design of functional units that are able
to serve both integer and floating-point instructions and
discuss the reconfiguration overheads. No modifications
to the compiler and instruction sets are needed because
the hardware steer instructions to the functional units
transparently.

3 Mutable Functional Unit Design

This section describes the design of a mutable func-
tional unit (MFU) and its mutation penalties.

3.1 MFU Design

In designing a mutable functional unit (MFU), we
would like to make use of existing hardware in the
floating-point adder and minimize modifications. We re-
strict the MFU to perform integer arithmetic, logic, shift,
and floating-point addition, and can be configured in one
of two modes. In the integer mode, it can perform 64-bit
integer addition, subtraction, shift, and logic operations.
In the floating-point mode, the MFU can perform double
precision standard 754 floating-point addition.

We base our MFU design on the R10000’s floating-
point adder [14]. The floating-point adder has three
pipeline stages: align, add, and pack. The first pipeline
stage (align) contains a right shifter, the second (add)
contains a 54-bit adder, and the third (pack) contains a
left shifter. The modifications that we do to the floating-
point units are minor and do not consume much die area.
They are:

e extension of the adder from 54 bit to 64 bits.
The adder serves integer addition/subtraction and
floating-point addition/subtraction.

e substitution of the 53-bit right shifter by a 64-bit
barrel shifter. The shifter performs both left and
right shift integer instructions and alignment for
floating-point addition/subtraction.

e insertion of 4 programmable switches along the
data-path

instructions Ner/
J g 0

[LoGic UNﬂ

Al Blg

SIGN

2

integer

Figure 1: Double precision IEEE 754 floating point adder

e addition of a logic unit to execute integer logic in-

structions.

The resulting design is shown in Figure 1. The circles
represent the programmable switches. The MFU takes
two operands as input, and two outputs are dedicated
respectively to integer and floating-point results. In the
integer mode, the swap unit is disabled (switch RS1a).
Hence, the input of the barrel shifter is B1. The two
inputs of the adder are respectively connected to Al and
B1 by the two switches RS2a and RS2b. In the floating-
point mode, the inputs of the adder come from the first
stage of the pipeline. The barrel shifter is controlled
by the operations performed on the exponents. In that
scheme, only the 54 least significant bits of both the
adder and the barrel shifter are used. To simplify the
design, at most one instruction can enter or exit the
MFU in a single cycle.

3.2 Mutation Penalties

Switching the MFU mode involves a penalty. Due
to the 3-stage pipeline when configured as a floating-
point unit, and only 1-stage pipeline when configured
as an integer ALU, the time for switching from integer
to floating-point and vice versa is not constant. This
is shown in Table 1. Given an incoming instruction to
be served (column 2 in Table 1), the mutation penalty
depends on the current instruction (column 1) and the
next instruction that follows the incoming one (column
3). Note that the penalties remain the same for highly
pipelined adder, except in Case 6 where the penalty
would be equal to the number of pipeline stages for
“align” stage + 1. However, since the “add” stage la-
tency is the most significant one, this penalty remains
very small compared to the number of pipeline stages.

To illustrate the mechanism and timing of MFU muta-
tion, here we discuss two situations. The first deals with
a sequence of an integer addition followed by floating-
point addition (Case 1) which does not exhibit muta-
tion penalty. This process is illustrated in Figure 2-(a).

Table 1: MFU mutation penalty

[Case] [[current [incoming | next [Penalty |
1 int to logic/add | fp-add fp-add 0
2 float shift fp-add fp-add 1
3 float to fp-add shift not add 0
4 int fp-add logic add 1
5 fp-add shift all int 1
[fp-add int-add all int 2

1 2 3 4)
} } } } } Time
Stage 1
(barr[ealgsehifter) FP-ADD,
Gages (_aoD FP-ADD,
Stage 3
(barrtea Shitter) FP-ADD
(@)
1 2 3 4]
} } } } } Time
(ba?rtglgsehilﬁer§FP‘ADD
Thages FP-ADD, ADD
Stage 3
(barr[ealgsehifter) FP-ADD,

(b)
LEGEND:

= Pipeline Slot with instruction x

AAAAAY = Reconfiguration
= No activity

Figure 2: Mutation mechanism and penalty for a se-
quence of instructions: {ADD, FP-ADD} (a), and {FP-
ADD, ADD} (b)

The figure shows the three pipeline stages in the MFU
(shifter, adder, shifter) and for each stage, what instruc-
tion is executed or reconfiguration is performed. FEach
time step corresponds to one clock cycle. At time 1, the
integer addition (ADD) is served by the adder in the
Stage 2 of the pipeline. Since the following instruction
is a floating-point adder (FP-ADD), Stage 1 is being
reconfigured to accept the FP-ADD. At time 2, ADD
has finished execution and FP-ADD can now use Stage
1 while Stage 2 is being reconfigured. At time 3, FP-
ADD moves to Stage 2. By this time, reconfiguration
has completed. Thus at time 4, the FP-ADD simply
flows through the pipeline to Stage 3. Since ADD and
FP-ADD are issued to the MFU back-to-back at time 1
and 2 respectively, the mutation penalty is fully hidden.

The second situation deals with a sequence of floating-
point addition followed by an integer addition (Case 6)
which requires 2-cycle mutation penalty. At time 1, FP-
ADD is served by the shifter in Stage 1. At time 2,
FP-ADD has moved to Stage 2 of the pipeline and Stage
1 can now be reconfigured to accept ADD. However, the
adder needed by the integer addition is still occupied by
FP-ADD. At time 3, FP-ADD moves to Stage 3 while
Stage 2 is being reconfigured. At time 4, FP-ADD has
completed execution while ADD is now being served by
the adder. Since FP-ADD is issued at time 1 and ADD
is issued at time 4, for two clock cycles (time 2 and 3)
the MFU cannot accept new instruction.

Although the mutation penalty is low (at most 2 cy-
cles), we need to make sure that mutation does not hap-

pen very frequently.

4 MFU Integration

Microprocessors that will likely benefit the most from
an MFU integration is the ones that have many func-
tional units per chip. These microprocessors are likely
to be partitioned into clusters, with each cluster consist-
ing of an issue path, functional units, and register files.
This architecture is illustrated in Figure 3. In Figure 3-
(a), instruction decoding is performed globally, followed
by a hardware logic to route the decoded instructions
into the clusters. Alternatively, this routing can also be
performed statically by the compiler in a similar fashion
to a VLIW machine. Figure 3-(b) shows the hardware
does not contain steering logic, and instruction decod-
ing can now be performed locally in each cluster. The
latter approach is in line with Sun’s MAJC processor
architecture [8]. In both cases, the communication bus
allows communication across different register files. The
last stage is instruction retirement. The MFU can be
integrated in each cluster to support both integer and
floating-point execution.

‘ DecoderRename‘ ‘ DeooderRename‘
[
‘ DiSJBI(‘Zh‘HWE‘ ‘ Dispal‘Ch*'"SiJE‘ ‘ Dispatch+issue ‘ . ‘ Dispatch+Issue ‘
‘ MFU-+others ‘ ‘ MFU-+others ‘ ‘ MFU+others ‘ ‘ MFU+others ‘

[Register File | Comm | Register File | [Register File | Comm [Register File |

(a) (b)

Figure 3: MFU integration in multi-cluster micro-
processors

As a first step in the evaluation of MFU integration
in microprocessors, in this section we only focus on inte-
grating the MFU in a single cluster environment that is
based on a current superscalar microprocessor, the MIPS

R10000.
Dispatch
%)

14 () o

g :

ALU1 FPU1

ALU2 FPU2

‘ int registers H fp registers ‘ ‘ int registers H fp registers ‘
@ (b)

Figure 4: (a) Base R10000 (b) Base R10000 with
integrated MFU.

4.1 Integration on the R10000 architecture

We base the architecture on a widely studied proces-
sor architecture, the MIPS R10000. It is a superscalar

processor that can fetch and dispatch four instructions
every clock cycle. The instruction flow is partially shown
with the functional units in Figure 4-(a). The R10000
has 2 integer ALUs, ALU1 is capable of performing basic
operations (add/sub, logic) plus branch and shift oper-
ations, and ALU2 is capable of performing basic plus
integer multiplication and division. There is one Ad-
dress Generation Unit (AGU) which is embedded in the
Load Store Unit (LSU). Finally, there are 2 floating-
point units (FPUs). FPUI is capable of performing addi-
tion, and FPU2 is capable of performing multiplication,
division, and square root operations. There are three
reservation stations: integer, floating point, and mem-
ory/address reservation stations. Each reservation sta-
tion has 16 entries. Analysis of instructions is performed
at the dispatch stage right after fetched instructions are
decoded for operands. After decoding the operands, reg-
ister renaming is performed to remove write-after-write
and write-after-read dependences. Then instructions are
dispatched to various reservation stations depending on
their types. When all the operands of an instruction is
available, the instruction is issued to a functional unit,
even if earlier instructions have not been issued. This
issuing scheme is called out-of-order. The execution re-
sults are then stored to the registers and also put on
the forwarding bus to notify other functional units and
reservation stations.

Our initial evaluation of the processor reveals that
the R10000 functional unit configuration does not give
optimal performance, where non-numerical applications
suffer significantly from lacking integer units. The IPCs
are reduced by 14% to 32% because of this problem. By
converting the FPU1 to MFU, the functional unit can
now provide extra integer execution bandwidth which
would otherwise be idle.

Our MFU integration is shown in Figure 4-(b). It
has an extra processing after decoding stage called in-
struction steering, which is performed in parallel with
the renaming stage, thus avoiding possible increase in
clock latency. The steering stage selects instructions to
be executed by the MFU. The selected instructions will
be dispatched to a new reservation station dedicated to
the MFU, that will issue the instructions only to the
MFU. In contrast to other reservation stations, this new
reservation station issues instructions in a strict FIFO
(in-order) manner. This makes the reservation station
simpler and smaller to implement. When the MFU de-
tects that the new instruction that is issued to it has a
different type compared to the one it is serving, it per-
forms mutation, then it executes that instruction. As
with other functional units, the results of the MFU com-
putation are also put on the forwarding bus.

In the evaluation section (Section 6) we evaluate how
many entries the new reservation station needs to have.
We find that 8 entries, half the size of other reserva-
tion stations in R10000, is sufficient. Furthermore, since
the reservation station will now accommodate all floating
point addition operations, the floating-point reservation
station now only contains floating point multiplication,
division, and square root operations. Thus, the number
of entries in the floating-point reservation station can
also be reduced from 16 entries to 8 entries. Thus, we

have kept the total number of reservation station entries
constant.

4.2 Steering Logic Algorithm

The algorithm that we use for instruction steering
logic is shown in Figure 5. The algorithm uses a sat-
urating counter, cfp, to detect whether there is a need
for floating-point addition bandwidth. If there is, in-
dicated by a positive value of cfp, the steering logic
only dispatches floating-point addition operations into
the MFU’s reservation station. Otherwise (cfp = 0),
the steering logic dispatches integer and memory opera-
tions into the MFU’s reservation station in an n-chunk
round-robin manner, which is basically a round robin
with a granularity of n instructions. The counter cfp is
controlled by 2 parameters: cfp_increment, and cfp_max.
crr is used to control the round-robin scheduling, where
the chunk size is specified by n. For our study, we use
cfp_-max = 16, cfp_increment = 4, and n = 4. The adders,
comparators, multiplexers needed by the steering logic
are small, since they only operate on 4-bit data.

if (fp_addition instruction) {
Dispatch to MFU’s reservation station
cfp = min(cfp + cfp_increment, cfp_max)
} else {
cfp = max(cfp-1, 0)

/* no fp addition bandwidth needed */
if (cfp == 0) {
crr++;
if (crr >= n)
crr = crr - 4 * n;
if (crr >= 0)
Dispatch to MFU RS
else
Dispatch to other RS

Figure 5: Steering logic algorithm

4.3 Integration on Enhanced R10000

We hypothesize that the performance improvement
provided by the MFU is related to the utilization of the
MFU. The best performance is obtained when there are
enough integer instructions to dispatch to the MFU to
keep the utilization high, up to a point where satura-
tion in the utilization is reached. In particular, we en-
hance the R10000 architecture by increasing the abil-
ity of the processor to fetch more instructions per cy-
cle. Although some of the enhancements are too op-
timistic for real implementation, they are suitable in
evaluating our hypothesis. The enhancements are in-
creasing the issue width of the processor to 8 and 16
instructions, larger on chip cache, perfect branch pre-
diction, and processor-memory integration. All the en-
hancements increase the fetch or decode rate potential
of the processor by increasing number of available in-
structions to dispatch (wider issue), less instruction and
data misses (larger caches), lower cache miss penalties
(processor-memory-integration), and more available in-
structions across branches (perfect branch prediction).

5 Evaluation Environment

Applications. We use numerical and non-numerical
applications from Spec95 benchmark [1] plus kmeans [12]

for our study. These include perl, li, ijpeg, compress,
swim, su2cor, and waveb. The description of the codes
and the input sets used are shown in Table 2.

Table 2: Application and input sets description

[App. [Description [Input Set |
Swim Shallow water simulation Train
‘Waveb Maxwell’s equations Train
Su2cor Monte-Carlo method Train
Compress | Lempel-Ziv file compression Train
Ijpeg Image compression/decompr. Train
Li Xlisp interpreter Train
Kmeans Tterative clustering -D3 -N10000 -
K30 -n50
Perl Perl language interpreter Train

Simulator. Our simulation is based on Simplescalar
version 3.0 [4], a cycle-accurate superscalar processor
simulator. We modify the simulator to simulate closely a
MIPS R10000, except in the usage of reorder buffer and
the mechanism of recovery from branch misprediction.
The simulation parameters of the base R10000 and its
enhancements are shown in Table 3. In the Enhanced
R10000 and Integrated MFU, the table only shows the
parameters that change. We integrate the MFU, new
reservation station, and steering logic to the base as well
as enhanced R10000 architectures.

Table 3: Simulation parameters.

Architecture | Parameters and Value

Fetch, decode, and commit width: 4

Issue: out of order

Branch prediction: Bimod, 512 entries

Base Number of registers: 32 int + 32 fp

R10000 Functional units: ALU1, ALU2, LSU, FPU1, FPU2
(R10000 latencies)

ROB: 64 entries

Resv stations: 16 entries int, addr, and fp

L1: 2-way, 32 KB-I 4+ 32 KB-D, 1 cycle hit

L2: 2-way, 4MB, 11 cycle hit, 69 cycle miss

wider issue: Fetch, decode width: 8-way and 16-
way

Perfect branch prediction (pbp)

Larger on-chip cache (loc):4-way, 128 KB-1 + 4-
way, 128 KB-D L1, 1 cycle hit

Integrated processor and memory (pim): no L2,
mem access 5 cycles

Enhanced
R10000

Integrated Func units: ALU1, ALU2, LSU, MFU, FPU2
(R10000 latencies)
MFU Reservation stations 16-entry int and addr, 8-entry

mfu and fp

6 Evaluation

6.1 Results on Base R10000

Figure 6 shows speedups of R10000(base)+MFU over
the R10000(base) for each applications. The speedups
are calculated by comparing throughput or IPCs. Each
application has four bars. The first three bars of each ap-
plication show the speedups of the MFU integration with
various number of reservation station entries: 4 entries
(MFU-4 on the first bar), 8 entries (MFU-8 on the sec-
ond bar), and 16 entries (MFU-16 on the third bar). The
last bar of each application shows the “ideal” speedup,
an upperbound performance case where the MFU has no
mutation penalties and that is able to concurrently exe-
cute floating-point and integer instructions. The “ideal”
MFU is an expensive implementation which requires an
addition of an extra integer ALU to the FPUL1 in the orig-
inal R10000. First, the figure shows that the reservation
station for the MFU needs to have at least 8 entries, as
the speedups are noticeably lower with only 4 entries.

Comparing 8 entries with 16 entries, however, indicates
that there is virtually no difference in speedups, suggest-
ing that 8 entries are sufficient.

12

11 — -
05 q
s 4
095 L L —

swim wave5 su2cor compress ijpeg li kmeans perl
Applications

Speedup over base R10000

Figure 6: Speedup of R10000 with MFU over base
R10000

Now, let us consider the 8-entry reservation station in
Figure 6. The figure shows that IPC of non-numerical
applications is improved significantly, with speedups
ranging from 8.3% for compress to 14.3% for kmeans.
These speedups are very close to the ideal speedups,
showing the effectiveness of the MFU. For floating-point
applications, there is virtually no speedups. This is ex-
pected as the MFU is always busy with floating-point
add instructions, leaving no room for executing integer
instructions. The ideal speedups, however, show minor
speedups because the functional unit can execute both
floating-point and integer instructions at the same time.

Table 4 shows the percentage of time that the reser-
vation station dedicated to MFU is full for various num-
ber of entries. The averages are presented for numeri-
cal applications and non-numerical applications. Firstly,
the table shows that with 16-entry, the reservation sta-
tion is never full. Secondly, it shows that the averages
for numerical applications are higher compared to non-
numerical applications, 48.0% vs. 24.2% for 4-entry, and
8.8% vs. 1.1% for 8-entry. This is because numerical ap-
plications have a lot more floating-point additions that
the reservation station has to handle. A 4-entry reser-
vation station is clearly saturated. However, a 8-entry
reservation station handles it almost as well as the 16-
entry for non-numerical applications, in average it is only
full for 1.1% of the time, confirming the results of Fig-
ure 6 where the speedups for 8-entry and 16-entry MFU’s
reservation station are almost identical.

Table 4: Percent of time the MFU’s reservation sta-

tion is full
[Application | 4-entry [8-entry [16-entry |

Swim 57.0% 12.2% 0%
‘Waveb 33.3% 7.0% 0%
Su2cor 42.7% 7.3% 0%

[Average | 48.0% | 88% [0% |
Compress 22.2% 1.0% 0%
Tipeg 252% | 2.4% 0%

Li 18.1% 0.2% 0%
Kmeans 31.2% 0.6% 0%
[Average [24.2% [1.1% [0% |

To get deeper insights into the effects of mutation
penalties, we profile the mutation distance (how many
instructions are executed between two mutations). For
non-numerical applications (compress, ijpeg, li, and
kmeans), it ranges from 325 to 7.3M instructions, with
an average of 3.5M instructions. This indicates that mu-
tation is very seldom and the mutation penalties are in-
significant. For numerical applications (swim, waves,
and su2cor) it ranges from 16.5 to 40.5 instructions, with
an average of 26.5 instructions. Although it is more of-
ten, but it is still tolerable.

6.2 Results on Enhanced R10000

Table 4 shows that for non-numerical applications, the
reservation station is very seldom full (< 2.5% for all ap-
plications). This suggests that probably the MFU is still
under-utilized. However, for numerical applications, the
reservation station is in average full for 8.8% of the time,
which suggests that the MFU may already be saturated
that the enhancements may not yield better speedups.

Figure 7 shows the resulting speedups of MFU inte-
gration to various enhanced R10000 architectures. There
are six bars for each application. For reference, the first
bar for each application shows the speedups of MFU in-
tegration in the base R10000 architecture (same as the
second bar in Figure 6) The next five bars show the
speedups of MFU integration on enhanced R10000 archi-
tectures that include larger on chip cache (second bar),
processor memory integration (third bar), 8-way super-
scalar (fourth bar), 16-way superscalar (fifth bar), and
perfect branch prediction (sixth bar).

For all non-numerical applications, the MFU integra-
tion in the enhanced architectures generally provide bet-
ter speedups compared to the base R10000 architecture,
although in varying degrees. Wider fetch (R10000(8-
way) and R10000(16-way) in the figure) enhance the
speedups the most, followed by perfect branch prediction
(pbp), large on chip cache (loc), and processor-memory
integration (pim). In all cases, the speedups range from
9.1% to 20.7%. As previously suspected, numerical ap-
plications’ speedups are generally not affected.

125 T T T T T T T T

R:
I R10000(loc)
I R10000(pim)
[R10000(8-way)
1.2} | =0 R10000(16-way) m 4

Speedup

1.05F H

swim waves su2cor compress ijpeg i kmeans perl
Applications

Figure 7: Speedups of MFU integration in the base
and enhanced R10000 architectures.

7 Conclusions and Future Work

Conclusions. In this paper, we propose a muta-
ble functional unit (MFU) that combine a floating-point

adder and an integer arithmetic and logic unit (ALU)
into a single functional unit, which reconfigures itself at
run-time to serve different types of instruction from a
program instruction stream. MFUs can be used in mi-
croprocessors to improve functional unit utilization, re-
duce power consumption, and to improve performance
without increase in die area. MFUs only require minor
modifications to the existing floating-point adder design.
Overheads of reconfiguration are small, typically 0 to 1
clock cycle, and at most 2 clock cycles. We demonstrate
how simple integration with a microprocessor based on
the R10000 can be achieved. This integration allows
speedups of non-numerical applications by 8% to 14%
while keeping the number of functional units constant.
We also show that various enhancements to the base ar-
chitecture that increase the instruction fetch rate affect
the speedups positively.

Future Work. For future study, we plan to evaluate
the integration of the MFU on multi-cluster architecture,
especially those with a high number of functional units
per chip, such as the IBM BlueGene [2]. Other aspects,
including hardware cost and power consumption will also
be investigated.

References

[1] Standard Pefromance Evaluation Corporation.
http://www.spec.org.

[2] IBM corporations. Bluegene project.

http://www.research.ibm.com/bluegene.

[3] Dominique Lavenier, Yan Solihin, and Kirk W. Cameron. Recon-
figurable arithmetic and logic unit. SympA’6: Symposium sur
les Architecture Nouvelle de Machine, Besancon, France, June
2000.

[4] Doug Burger and Todd M. Austin. The simplescalar tool set,
version 2.0. Technical Report 1342, University of Wisconsin-
Madison Computer Science Department, June 1997.

[5] S. Subramanya Sastry et al. Exploiting idle floating-point re-
sources for integer execution. ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1998.

[6] Maya Gokhale and J. Stone. Compiling for hybrid rsic/fpga ar-
chitecture. IEEE Symposium on FPGAs for Custom Computing
Machines, April 1998.

[7] John R. Hauser and John Wawryznek. Garp: a mips processor
with reconfigurable coprocessor. IEEE Symposium on FPGAs
for Custom-Computing Machines, pages 24-33, April 1997.

[8] Sun Microsystems.
Majc-5200: a high performance microprocessors for multimedia
computing. http://www.sun.com/microelectronics/majc.

[9] Subbarao Palacharla and J.E.Smith. Decoupling integer execu-
tion in superscalar processors. Proceedings of the 28th Annual
International Symposium on Microarchitecture, 1995.

[10] Rahul Razdan and Michael D. Smith. A high-performance mi-
croarchitecture with hardware-programmable functional units.
Proceedings the 27th Annual International Symposium on Mi-
croarchitecture, 1994.

[11] Synopsis. http://www.darpa.mil/ito/psum1998/g052-0.html.

[12] James Theiler and G. Gisler. A contiguity-enhanced k-
means clustering algorithm for unsupervised multispectral im-
age segmentation. Proceedings of the SPIE 3159, web
http://www.ece.new.edu/groups/rpl/kmeans, pages 108-118,
1997.

[13] Ralph D. Wittig and Paul Chow. Onechip: An fpga processor
with reconfigurable logic. Proceedings of the IEEE Symposium
on FPGAs for Custom Computing Machines, 1996.

[14] Kenneth C. Yeager. The mips r10000 superscalar microarchitec-
ture. Proceedings the 27th Annual International Symposium on
Microarchitecture, pages 28—40, 1996.

