Evaluation of anchoring schemes for fast DNA sequence

alignments

Stéphane Guyetant, Dominique Lavenier
{sguyetan, lavenier }@irisa.fr
IRISA, Université de Rennes 1,

Campus de Beaulieu,
35042 RENNES Cedex - France

Abstract

To be performed within a reasonnable amount of time,
a whole genome search needs a heuristic step, like the
anchor generation of BLAST algorithm. We present the
possibilities of a translation of such an heuristic on a
hardware filter and show the methods to evaluate and
quantify the quality of anchoring step and the speed-up
achieved.

1 Introduction

Searching a nucleotide sequence against a whole
genome, or even a whole database is routinely per-
formed to identify the possible functionnality of a se-
quence. Speeding up the process with heuristics shall
not decrease the sensibility while we may loose weak
similarities: a too restrictive anchor generation will
give less hits, decreasing the overall execution time but
will miss significant alignments. On the other hand,
refining the anchoring search is tricky as the whole
database is processed throught this step. The balance
between spending more time finding less but more valu-
able anchors and having a fast anchoring step can be
solved by the use of dedicated hardware. A prototype
harware filter currently under development in our team
can do both by introducing parallelism in anchor find-

ing.

The principle of anchoring: The idea is to quickly
find small words, called seeds, or hits, or anchors that
betray a possible alignment. Any alignment may con-
tain this short and ungapped word of strong similarity.
An exhaustive scoring method is then applied to ex-
tend these shorts alignments or to join several of them.
If we represent an ungapped alignment with a “1” for a
match and a “0” for a mismatch, then we are searching
a short region with a high density of ones.

Widely accepted algorithms: BLAST [1] is by far
the most used software to perform alignments. Regard-
less of its actual implementation, the heuristic seeks ex-
act matches with a default size of 11 nucleotides along
every alignment of the query and the database. It suf-
fers from a lack of sensitivity, and its false negatives
can be quite high ranked when an alignment score is
computed with dynamic programming.

A new seeding scheme has been proposed in the soft-
ware PATTERNHUNTER [8], for which one hit is obtained
when the alignment obeys to a given pattern. The pat-
tern is described by a succession of “1”, when a match
must occur, and “0” reflects a “don’t care” position. For
weight 11 (the same as BLAST), their optimal pattern,
11010010100110111, shows significant enhancement on
both specificity, because the model has a smaller hit
probability in low-similarity regions, and sensitivity,
through a greater hit probability in high-similarity re-
gions.

Other programs, including FASTA [9], CHAOS [4] or
BLAST?2 [2], generate of two or more hits. FASTA looks
for the 10 best scores obtained by grouping together
several nearby short seeds (4 to 6 nucleotides). CHAOS
chains nearby hits: while into an obvious alignment, it
is cheap to extend it with the heuristic, thus reducing
the final search space. BLAST2 links two close hits if
the rigorous alignment between the two hits does not
overcome a threshold score.

2 New anchoring ideas

General purpose processors are dedicated to arithmetic
operations and do not handle strings efficiently. For
example, the most efficient dynamic programming im-
plementation in software for string alignment is PAR-
ALIGN [10], which uses the special multimedia instruc-
tions of Pentium processors, can achieve 150 million
MCPS (matrix cell per second) on a Pentium IIT at
400MHz (28M transistors) when a dedicated chip with
0.3M transistors running at 50MHz can perform 3200
million MCPS [6]. This illustrates how a hardware im-
plementation allows string processing more easily and
efficiently; on the same way, we translate the heuristic
step into a hardware filter, for which execution time is
not bounded to the size of the anchor. Our limitation
is merely the maximum frequency of implementation
that implies some regularity properties on the heuris-
tic algorithm.

We decided to limit the length of anchors to the size
of a small exon, say 30 to 40bp, on the assumption
that exonic parts are better conserved throught evo-
lution. Default values of CHAOS and BLAST2 go that
way: they respectively search a 34bp and a 40bp zone.
On the other hand, small anchors are of limited inter-
est for specificity and from a statistical point of view,
as increasing their size limits the probability of getting



a hit by chance [7].

Non-position-specific patterns: Looking for a
given pattern is quite simple, particularly for an ex-
act match subsequence, but may be too restrictive be-
cause it introduces tough constraints on the position of
matches. Our idea is that just “at least k in n” functions
can help us in finding weak seeds that lead finally to a
more sensitive algorithm. For too small k/n ratios, the
heuristic obviously yields a lot of erroneous alignments.
Moreover, 35% identity between two coding sequences
is the threshold that allows a match to be accurately
identified [3].

Association of patterns: The kind of work that is
done by BLAST2 or CHAOS is to produce a large number
of seeds, but they generate a hit only when two or
more seeds respect some association rule, the simplest
beeing proximity. Our idea is to impose a given level of
identity on the neighborhood of the anchors to dismiss
isolated ones. The basic function used is: generate a
hit if (a) and ((b) or (c)), with (a) an anchor generated
by a selective method; (b) and (c) are sensible filters
on the left and right neighborhood of (a).

3 Methods for heuristic validation

For testing our ideas, we used a panel of Gen-
bank sequences downloaded from the NCBI ftp site.
For the database, we chose the genome of Es-
cherichia_ Coli_ K12 (4.1M DNA base pairs (bp)), and
the human chromosoms 20 (55.9 Mbp) and 21 (34.3
Mbp). For the query sequences, we compiled a various
set of ESTs (Expressed Sequence Tag) whose size range
from 300 to 500 bp.

Sensitivity and specificity: Sensitivity and speci-
ficity are the two metrics usually used to measure the
accuracy of a prediction [5]. In the field of the se-
quence alignment, a heuristic can be seen as the pre-
diction of a possibly relevant alignment. Thus, the
first step of our method determines exactly the local
alignments between the database and the query se-
quence. This is done with the SSEARCH implementa-
tion of Smith-Waterman algorithm (version 3.4) [11].
Then, when testing a heuristic we run the database
against the query and we check if a sequence that gave
at least one hit belongs to the output of SSEARCH;
if so, the sequence is considered as a true positive
(TP); if not, it is considered as a false positive (FP).
The remaining sequences of the output of SSEARCH
are the false negatives (FN). These three values are
added respectively along the experiments, that is to
say for each couple database/query. We finally calcu-
late the sensitivity Sn= TP/(TP+FN) and the speci-
ficity Sp=TP/(TP+FP). These tests allowed us to se-
lect efficient PATTERNHUNTER-like anchoring schemes
with increased size, up to 31 bp with a weight 19.

Sensitivity versus similarity: Sensitivity can be
seen as the probability of obtaining a hit when aligning

the query and the database at a given similarity. Thus,
on the corresponding curve, we can compare manifold
heuristics by looking at the slope at the inflexion point.
We generated the databases at each level of similarity
by introducing the corresponding number of mutations
into the query sequence. These tests have shown the
superiority of the “k in n” filters when more selectivity
is desired.

Comparison to BLAST: BLAST beeing the most
widely used method to perform fast alignments, it
seems interesting to compare specifically to it. We ran
systematic tests of the BLAST heuristic with an associa-
tive pattern as defined in part 2: the same-size BLAST
hit is extended with “k in n” filters. We first verified on
100.000 HSPs generated by BLAST that the extensions
selected occurred in more than 99% of the alignments.
Then we performed the extension on the neighborhood
of raw hits, looking for high selectivity, i.e. the lowest
number of results. For instance, extending the blast
anchor with a “8 in 16” filter eliminates 96% of gener-
ated hits for a quality loss of only 0.8%.

As the filtering is handled by a hardware pre-
processing that introduces latency but no delay, we can
expect our first raw implementation to run more than
25 times faster than BLAST.

References

1. Altschul, S.F. et al. (1990) Basic local alignment
search tool. J Mol. Biol., 215, 403-410.

2. Altschul, S.F. et al. (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein database search
programs. Nucleic Acids Res., 25, 3389-3402.

3. Anderson, I. and Brass, A. (1998) Searching DNA
databases for similarities to DNA sequences: when is
a match significant? Bioinformatics, 14, 349-356.

4. Brudno, M. and Morgenstern, B. (2001) Fast and
sensitive alignment of large genomic sequences.Proc.
IEEE CS Conf. Bioinformatics, 138-148.

5. Burset, M. and Guigo, R. (1996) Evaluation of gene
structure prediction programs. Genomics, 34, 353-367.

6. Han, T. and Parameswaran, S. (2002) SWASAD: An

ASIC design for high speed DNA sequence matching,.
Proc. 15th Int. Conf. on VLSI Design, IEEE CSP.

7. Kent, J.W. (2002) BLAT - The BLAST-like alignment
tool. Genome Res., 12, 656-664.

8. Ma, B., Tromp, J. and Li, M. (2002) Patternhunter:
Faster and more sensitive homology search. Bioinfor-
matics, 18, 440-445.

9. Pearson, W.R. and Lipman, D.J. (1988) Improved
tools for biological sequence comparison. Proc. Natl.
Acad. Sci. USA, 85, 2444-2448.

10. Rognes, T. (2001) ParAlign: a parallel sequence
alignment algorithm for rapid and sensitive databases
searches. Nucleic Acids Res., 29, 1647-1652.

11. Smith, T. and Waterman, M. (1981) Identification of
common molecular subsequences. J. Mol. Biol., 221,
403-420.



