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Abstract

Bacterium genome plasticity can efficiently be studied by
Long-Range PCR: genomes of different strains are split into
hundreds of short segments which, after LR-PCR amplifica-
tion, are used to sketch profiles. The segments have : (1) to
cover the entire genome, (2) to overlap each other, and (3)
to be of nearly identical size. This paper adresses the prob-
lem of finding a list of segments satisfying these constraints
“as much as possible”. Two algorithmes based on dynamic
programming approach are presented. They differ on the
optimization criteria for measuring the quality of the cov-
ering. The first one considers the maximal deviation of the
segment lengths relatively to an ideal length. The second
one automatically finds a segment length which minimizes
the maximal deviation.

1 Introduction

A practical way to study the plasticity of bacterium
genomes without systematically sequencing all the avail-
able strains is to exploit the LR-PCR (Long Range Poly-
merase Chain Reaction) technique. The genomes of the
strains are split into a large number of short segments be-
fore performing a LR-PCR on each of them. Depending
on the reorganization, the deletion or the insertion of cer-
tain genomic zones, it is expected that a few segments will
not be amplified. Thus, a profile – or a signature – can be
assigned to each strain. It represents the set of amplified
and non amplified segments. The final step is to perform
a global analysis of all the profiles. This strategy, recently
tested by Ohnishi et al. [2] to study the genome diversity of
E. coli, is explained on Fig. 1.

This strategy first implies to determine the set of seg-
ments which will cover the genome. A strain whose genome

is entirely sequenced is chosen as reference. Then, potential
PCR primers are localized on the genome since they specify
the position where the segments start and end. Having these
data, the goal is to cover the genome with overlapping seg-
ments of nearly identical size, knowing that the segments
locations are constrained by the position of the primers.

Actually, the distribution of the primer sites along the
bacterium genome is non-uniform. There may have large
regions (a few Kbp) without primer sites or, on the con-
trary, very dense regions of primer sites. In addition, some
regions are forbidden: they correspond to repeated zones,
bacteriophage sequences, or mobile elements such as trans-
posons. As some of these regions are longer than the ex-
pected length of the covering segments, the circular genome
is cut into a few number of linear pieces, called domains
(see Fig. 2).

Thus, the problem of segmenting a complete bacterial
genome is reduced to cover each domain with segments of
nearly identical size. Along a domain, there are specific po-
sitions called primer sites. The overlapping segments can
start and end only at these particular positions. If we as-
sume, for the sake of simplicity, that a solution is made of a
list S of N segments, and that each segment can take only P

different positions, then the number of possibilities is equal
to P N . Finding the best one when N is large is clearly a
combinatorial problem (in real application, N > 100).

More formally, the problem can be formulated as fol-
lows. Given a domain, i.e. a DNA sequence ranging from
a few 100 Kpb to a few Mbp, together with all potential
primer positions, we need to cover it with a sequence of
overlapping segments of nearly identical size. Such a cov-
ering will be called a segmentation if the segments satisfy
the following conditions:

• The length of any segment varies in the range [L, L].

• The length of the overlap between any two consecutive
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Figure 1. Strategy to study the plasticity of a circular bacterial genome: a reference strain is fully
covered with overlapping segments. The two extremities of each segment are characterized by
starting and ending primers. On the reference strain, the LR-PCR amplifies all the segments. On
strain A the zones a and f have swapped, preventing the amplification of segments 1, 2, 6 and 7. On
strain B, zone e is modified: segments 5 and 6 cannot be amplified.

segments varies in the range [O, O].

• The distance from the beginning of the domain to the
starting-primer of the first segment is no more than Ds.
The distance from the ending-primer of the last seg-
ment to the end of the domain is no more than De.

Two cases of this problem have been considered. In the
first one we search for a sequence S of overlapping seg-
ments, each one of size as close as possible to a given ideal
length L. In the second case, the value of L is unknown and
we look for a couple (L∗, S), where L∗, L ≤ L∗ ≤ L, and
such that the sequence S is of of minimal error with respect
to L∗.

For each case we: (i) formulate a suitable combinatorial
optimization model; (ii) program dedicated algorithm for
solving these models; (iii) analyze the complexity of the
proposed algorithms. We are not aware of other algorithms
from the literature to have been used for this purpose. This
paper focusses on the algorithmic aspects of the problem.
The reader interested in the genomic aspects can find more
details in the accompanying paper [5].

Organization of the paper is as follows. The formal state-

ment of the problem and definitions are given in section 2.
Section 3 is dedicated to the first case of the problem, while
section 4 considers the second case. Numerical results and
complexity analysis are provided in section 5.

2 Graph problem formulation

The formal statement of the problem is as follows. Let be
given: i) a nucleotide sequence D containing DL elements
(called domain); ii) a set Sl of starting-primer sites; iii) a
set Sr of ending-primer sites. We can then define the set
F of feasible segments, i.e. couples of starting and ending
primers, f = [b, e], b < e, such that:

• b ∈ Sl, e ∈ Sr.

• the length l(f) = e − b satisfies L ≤ l(f) ≤ L.

Let us denote by Fs (resp. Ft) the set of segments which
can begin (resp. end) a segmentation. This means that if
f = [b, e] ∈ Fs then b ≤ Ds and that if f = [b, e] ∈ Ft

then DL − e ≤ De.
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Figure 2. Regions X,Y and Z are forbidden. The length of each one of them is larger than the size
of the covering segments. The problem of segmenting a full genome is therefore transformed in
segmenting three linear pieces denoted here as A, B and C and called domains. Any domain is
associated to the solution of an independent subproblem.

Definition 2.1. The segment f ′ is compatible with the seg-
ment f (denoted as f ≺ f ′), iff f ′ starts to the left of the
ending-primer site of f and the length of the overlap is in
[O, O].

Definition 2.2. A sequence S = f1, f2, . . . fk of feasible
segments will be referred to as a covering sequence (seg-
mentation) if f1 ∈ Fs, fk ∈ Ft and fi ≺ fi+1.

Definition 2.3. A covering graph of the nucleotide se-
quence is a directed graph G(V, A):

• the node set V = F ∪ {s, t}, where s and t two addi-
tional vertices.

• the arc set

A = {(f, f ′) ∈ F × F : f ≺ f ′}

∪ {(s, f) ∈ {s} × Fs}

∪ {(f, t) ∈ Ft × {t}}

Remark 2.1. Note that the covering graph G(V, A) is with-
out circuits because of the binary relation “is compatible
with”. The non-directed version of this graph is a subgraph
of the so called interval graph (see chapter 1.5.4 [4]) over
the set of feasible intervals.

3 The case when the segment length L is
given

In this section we assume that an ideal length L is given
and we define a cost function CL(f) on F as: ∀f ∈
F CL(f) = |l(f)−L|. The problem to solve can be con-
sidered as a minmax (bottleneck) variant of the classical
Shortest Path Problem (SPP), if the length of a path r =
s, v1, . . . vk, t is determined by CL(r) = max

vi∈r
CL(vi).

One can easily see an one-to-one correspondence be-
tween covering sequences and the directed paths from s to
t in G. In this context the length of a path can be viewed as
the error of the segmentation associated to this path. If we
denote by R the set of paths from s to t, the problem to be
solved is min

r∈R
CL(r) = C∗

L. An instance of the problem

is given on Fig. 3, while its corresponding covering graph
is depicted on Fig. 4.

For a graph G without circuits, a dynamic programming
recurrence gives an algorithm linear in A. Let us denote
by di the length (in sense of max instead of sum) of the
shortest path from s to vi and let Γ−1(v) be the set of all
predecessors of v. Then obviously we have :

di = min
vj∈Γ−1(vi)

max{dj, CL(vi)} (1)

which leads to the algorithm SPP given below.
The SPP algorithm takes as input a graph and generates a

list of segments. The vertices of G are topologically sorted
before processed. This means that vertices are arranged on
a line in such a way that all arcs are from left to right.

Complexity Analysis

If the graph is represented by the predecessors of each ver-
tex, then the algorithm SPP has complexity O(|A|). This
follows from the observation that |A| equals the sum of in-
degrees of the vertices and from the fact that the complexity
of the topological sort is O(|A|) (see [4] chapter 3.3.4).

Remark 3.1. For our problem the indices of the vertices are
naturally induced by appearance of the starting-primers, i.e.
the graph is already topologically sorted.
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Figure 4. The covering graph corresponding to Fig. 3. The circles contain the segments lengths.
When the algorithm SPP is applied to this graph, it finds an optimal path (s − a − c− e − t) which
contains segments with lengths 12,10 and 8. The error with respect to 10 equals 2.

Algorithm SPP(G)
{Search for the shortest s− t path in G using a DP recurrence}
di = min

vj∈Γ−1(vi)
max{dj, CL(vi)} = max{dk, CL(vi)}

set π[i] = k; (note that k = arg min
vj∈Γ−1(vi)

max{dj, CL(vi)}

endfor
print : c← π[|V |];

while c > 0 do
print c;
c← π[c];

endwhile



4 Searching for the optimal segment length
in the interval [L, L]

Up to now, the error of the segmentation was measured
by the maximal deviation of the segments from a given ideal
length L. Usually, this length is taken as the middle of the
interval [L, L] (i.e. L = (L + L)/2) and is in fact a kind
of simplification of the problem. Note for example that on
Fig. 3 there is a feasible path (a, d, f). The deviation in
the lengths of the corresponding segments, (12, 14, 12),
is very small. In fact the error with respect to L = 13 is
one and this path is definitely a good candidate for the LR-
PCR technique. However, it cannot be discovered in the
framework of the above described model.

For these reasons, in this section, we make a step fur-
ther toward a quite natural generalization of the problem by
considering L as a parameter and looking for L∗ such that
the best segmentation with respect to it is of minimal error.
This will change the original problem min

r∈R
CL(r) = C∗

L

to the problem min
L

min
r∈R

CL(r) = C∗. In order to put

the later one in more tractable form we can exclude L from
the model in the following way: For an arbitrary (s − t)-
path r = sv0 . . . vnt let cr

min = min
vi∈r
{l(vi)} and

cr
max = max

vi∈r
{l(vi)}. (Recall that l(i) is the length of

the ith segment). Then the following assertion is true:

Theorem 4.1. The minimal error of the segmentation given
by a path r is 0.5(cr

max − cr
min) and it is attained at the

length L∗(r) = 0.5(cr
max + cr

min).

If we call cr
max − cr

min spread of the path r then ac-
cording to the theorem an equivalent reformulation of the
above-mentioned problem is simply to find the (s − t)-
path in G of minimal spread, which is to find 4∗ =
cmax − cmin = min

r∈R
{cr

max − cr
min}

Now, let us associate to any vertex i 6= s of the covering
graph a setAi defined as follows:

Ai = {(cr
min, cr

max) | r being a path from s to i} (2)

In this way a list Ai contains diverse spreads corre-
sponding to all possible (s − i)-paths. The solution is the
minimal spread in the list At. An intuitive construction of
the lists Ai is illustrated on Fig. 5, while formally they are
computed by the recurrences (3).

Ai =























{(L, L)} if i = s
⋃

j∈Γ−(t)

Aj if i = t

⋃

j∈Γ−(i)

{l(i) . I | I ∈ Aj} otherwise

(3)

where e. (l, u) denotes the smallest interval containing
e, l and u.

Remark 4.1. Note that the recurrence (3) is correct since the
covering graph is without circuits.

Defined in this way, the set At contains the pair
(cr

min, cr
max) for any r being a path from s to t. If the

vertices of the graph are topologically sorted, the recurrence
(3) can be computed by a single traverse of the graph. The
rest of the algorithm is now straightforward: select fromAt

the couple (l, u) with minimal spread, delete vertices with
length not in the interval [l, u]. Any of the (s− t)-paths in
the reduced graph is optimal.

Complexity Analysis

If the graph is represented by the predecessors of each ver-
tex, then the algorithm SPP has complexity O(|A|).

This algorithm is in fact a simple enumeration procedure
and the size of the sets Ai could be very large. For these
reasons we introduce an operation (say * operation) which
leads to a significant reduction in these sets size. The *
operation retains only those couples which are eligible for
continuation, i.e. mutually non inclusive and is more pre-
cisely defined as follows:

A∗ = A\{(l, u) ∈ A | ∃(l′, u′) ∈ A, [l′, u′] ⊂ [l, u]}
(4)

The recurrence (3) is respectively modified:

A∗
i =







































{(L, L)} if i = s




⋃

j∈Γ−(t)

A∗
j





∗

if i = t





⋃

j∈Γ−(i)

{l(i) . I | I ∈ A∗
j}





∗

otherwise

(5)
The * operation removes from Ai only pairs (l, u)

which are obviously non optimal, because of (4), and we
therefore do not lose solution. The algorithm SITA, is de-
scribed below.

Complexity analysis

Let A∗, B∗ be two sets such that any e ∈ A∗ (resp. any
e ∈ B∗) is a minimum in respect to the inclusion relation.
Note that in this case we can define the following total order
relation inA∗ (resp. B∗).

(l, u) ≺ (l′, u′) iff (l < l′) ∧ (u < u′) (6)

If we assume now that A∗ and B∗ are sorted according to
(6), then applying sort-merge alike algorithm we can realize



Algorithm SITA(G)
input: directed graph G(V, A, C);
output: minimal spread (cmin, cmax);
initialization: A∗

s ← {(L, L)};
topological_sort(G);

for i=2 to |V | do

for all vj ∈ Γ−(vi) do A∗
i ←

(

⋃

A∗
j

)∗

enddo ;

enddo ;
(cmin, cmax)← arg min

(l,u)∈A∗

t

(u− l);
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the solution. Respectively, at vertex f we can eliminate (7, 12) since [7, 10] ⊂ [7, 12]. This elements
reduction corresponds to the * operation defined in (4).
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the operation (A∗
⋃

B∗)
∗ in O(max(|A∗|, |B∗|)) oper-

ations (interval comparisons). Also note that the result is
directly sorted according to (6). Using this observation, we
can easily prove that the complexity of the SITA algorithm
is O(C|A|), where C is the maximum number of eligi-
ble intervals and all of them are in the interval [L, L]. The
inequality C ≤ (L− L)/2 can be easily verified.

5 Computational experiments

The SPP and SITA algorithms are general purpose in
sense of underlying graphs, but the primary goals were to
use them for the interval graphs discussed in the introduc-
tion. That is why all runs are done on graphs, corresponding
to domains of varying lengths with uniformly distributed
primers. Thus the lack of sufficient biological material is
compensated by a randomly generated genomes and despite
some mismatches with the reality they could serve well for
measuring the computational analysis of their efficiency.

Recalling that the basic parameters are: the length DL

of the studied genome domain, the number n of primers in
this domain, the allowing length from L to L for the seg-
ments and overlap from O to O , it seems more convenient
to express the computational complexity of the algorithms
as a function of these parameters. Towards this end, the fol-
lowing mixture of probabilistic and deterministic arguments
are used below.

If we denote by δ the average density of the primers
in the domain we obviously have δ = n

DL
< 1. Now,

for any starting-primer in the domain we have on aver-
age (L − L)δ compatible primers (i.e. each one of can
built a different segment beginning with the same starting-
primer). Thus, the total number of segments in the domain
is O((L − L)δn). Similarly, for a given segment, there
are on average (O−O)δ potential primers to begin a com-
patible segment; for any of these starting-primers, there are
on average (L − L)δ potential ending-primers. The to-
tal number of pairs of compatible segments (remember it
corresponds to |A| in the graph terminology) is therefore
O((L− L)2(O − O)δ3n).

Therefore, we obtain that the algorithms proposed in
this paper are linear in respect to the number of primers
in this domain. More precisely, the average bounds for
the maximum number of operations are: O(|A|) =
O((L − L)2(O − O)δ3n) for the SPP algorithm and
O(C|A|) = O((L − L)3(O − O)δ3n) for SITA al-
gorithm. As we already mentioned C = (L − L)/2
is a theoretical upper bound for the lengths of the lists
associated with the vertices. It was quite intricated (but
not unexpected) to observe how huge is the gap between
this bound and the real ones (less then 10 in all runs de-
picted on Fig. 7). One can easily show that this bound
is achieved for example on a graph of 11 vertices and costs

from L = 10 to L̄ = 20. If the pairs entering the vertex of
cost 15 are [10,16], [11,17], [12, 18], [13, 19], [14, 20]
then all (C = (L−L)/2) of them will survive the seep of
* operation. But whatever is the graph with such costs there
is no corresponding nucleotide sequence. In this sense, this
theoretical upper estimate for C is indeed very pessimistic
and unlikely to be reached in real life. For instance, real life
values for the parameters are: 1 Mbp for the length of the
domains ; 5000 to 15000 for the number of primers ; 10 Kbp
± 1000 for the length of the segments ; 1 Kbp± 500 for the
overlap and δ < 10−2 (density). In all our runs with these
real life parameters we observed that C < 10. In prac-
tice, the algorithm is fast and can segment whole genomes
in very short time.

6 Conclusion

In this paper we pose and answer two questions about
covering a genome by a sequence of overlapping segments.
The quality of the covering is measured according to two
criteria:

• the maximal deviation of the segment’s length from a
given length is minimal;

• the maximal spread between the longest and the short-
est segment is minimal.

We propose two algorithms: SPP for solving the former
problem and SITA for solving the later one. They take as
input the set of starting and ending-primers, the genome do-
main to split into segments, and the parameters correspond-
ing to the segment length and the overlap size. The result
is an optimal list of segments satisfying the corresponding
criterion. The algorithm SITA has been implemented using
the Objective CAML language. It is part of a package called
GenoFrag which also includes another software, jointly de-
veloped with the INRA1 microbiology team, to generate the
set of primers2. Actually, this software acts as a pipeline
of filters fed by a complete genome: each filter, dedicated
to some specific features, discard all the primers which do
not satisfy user-specified constraints–GC-content, thermo-
dynamic stability, hairpin loop size, etc. (see [5] for more
details).

We tested the two algorithms on the Staphylococcus Au-
reus [1], a Gram-positive pathogenic bacterium. Primers
were generated from the N315 S. Aureus strain using dif-
ferent filters. The largest domain represents 1.3 Mbp with

1Laboratoire d’hygiène alimentaire,UMR STLO, INRA, ENSAR, 65
rue de Saint Brieuc, 35042 Rennes, France

2GenoFrag contains also a software for solving the problem when the
length L is given. The complexity of the underlying algorithm is slightly
weaker (logarithmic factor) than SPP, since it focuses on graphs with cir-
cuits. We do not present it here for the lack of space. The interested reader
can find its description in [6].
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an average primer density of 0.006. The computation time
for generating the optimal list of overlapping segments on
a standard Linux machine (PC running at 1.6 Ghz with 256
Mbytes of memory) does not exceed one minute. This is a
very fast process compared to the space of all potential so-
lutions. Furthermore, as explained in the previous section,
the complexity of the algorithms is linear in respect to the
genome size.

Thanks to this property, the use of these algorithms is
definitely not restricted to small genomes, but can be ap-
plied to significantly larger ones.
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