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Abstract

Multi-Processor System-on-Chip (MPSoC) represents to-
day the main trend for future architectural designs.
Nonetheless, the scheduling of tasks on these distributed
systems is a major problem since it has a central impact
on global performances. This problem is known to be NP-
complete and only approximate methods can be used. In
the past, to approach optimal results, many heuristics have
been proposed. But their complexity continue to increase,
without considering efficient HW implementations. The
novel scheduling policy, introduced in this paper, finds an
interesting trade off between performance and complex-
ity. Our list scheduling heuristic, called LLD, can near-
optimally compute non-malleable tasks on multiple pro-
cessing elements to minimize the schedule length with a
low complexity. The comparison study achieved with al-
ready proposed algorithms shows that the LLD scheduling
algorithm significantly overcomes the previous approaches
in terms of processing element occupation as well as over-
all execution time.

1 Introduction

The emergence of new media applications demands a
steady increase in flexibility and efficiency. Typical appli-
cations, such as MPEG players, are usually computation-
ally intensive, preventing them from being implemented
on general-purpose processors. To achieve better perfor-
mances, designers take an interest in a System-on-Chip
(SoC) paradigm composed of multiple computation re-
sources with a high efficiency network. This new trend
in architecture design is named Multi-Processor SoC (MP-
SoC). Moreover, the execution of applications on such a
multiprocessing system requires scheduling the computa-
tion between a set of processing elements, which can be
either programmable processors or reconfigurable units.

Any application can be represented by a directed
acyclic graph G = (T, E), where T is a set of Ti tasks and
E is a set of precedence constraints between tasks. There-
fore, a task Tj can be scheduled only if all precedent tasks
have completed their execution. Furthermore, since the

scheduling of tasks on multiple resources is known to be
NP-complete [7], a scheduling heuristic must be chosen.

The features of processing elements and tasks take an
important part in the choice of the scheduling policy. In
this paper, we assume that the number of PE and the du-
ration of each task is known at compile time. If tasks can
be executed on a dynamically variable number of process-
ing elements (malleable tasks), the maximum completion
time (makespan) can be decreased and a better PE occu-
pation rate can be insured [6, 10, 19]. Nevertheless, we
do not consider this scheduling feature, because malleable
tasks need a new compilation or a multi-compiled code for
each task, since the number of computation hosts is unde-
fined at the compilation time. Therefore, it can hardly be
implemented in a hardware task scheduling.

This paper considers the problem of generating a
schedule for a set of n independent and non-malleable par-
allel tasks on a multiprocessor system consisting of P iden-
tical processing elements. A simple extension of this algo-
rithm can be use to manage multiple heterogeneous pro-
cessing elements. The aim of this scheduling is to find
a non-preemptive schedule that minimizes the makespan.
Tasks must be dispatched on one or several identical PE
for computation. In addition, no dispatching overheads are
considered. Our algorithm is called LLD (Level-by-level
and Largest-task-first scheduling with Dynamic-resource-
occupation). If this work is partially introduced in [13] with
a more constrainted approach, our main novel paradigm re-
mains in our processor allocation strategy, which consider-
ably improves scheduling performances.

The issue of interconnection networks, shared re-
sources or multiple synchronizations are not taken into ac-
count in this paper. We will only consider independent
tasks without any interprocessing contention by using a
hardware component. This manages all these constraints
before the delivering of tasks. This architecture dedicated
to the control and named RAC is presented in [20]. More-
over, we favor contiguous processor allocation for a same
task implementation. It sounds more realistic for a hard-
ware design that shared resources are close for better per-
formances. The algorithm introduced in this paper could
also be used with distant processor allocation, if the net-
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work topology is adapted. Moreover, we do not consider
only systems composed of P = 2m processing elements,
with m ∈ N, since it is more practical for a multiprocess-
ing platform. But this neither causes constraints on the
scheduling technique proposed in this paper nor reduces
its performances.

This paper is organized into four sections. In the next
section a taxonomy of task-scheduling algorithms is pro-
vided. In section 3, the LLD algorithm is detailed and in
section 4, a comparison analysis with other already pro-
posed algorithms is presented. Finally, section 5 concludes
this paper.

2 Previous Work

The problem of non-malleable task assignment has been
widely studied. Solutions can be classified into several dif-
ferent categories such as guided random search, clustering,
duplication-based or list-scheduling algorithms.

Genetic algorithms (GA) are the most extensively in-
vestigated guided random search methods for task schedul-
ing. They are expected to reach good performances, but
their execution time and their hardware complexity are sig-
nificantly higher than the other alternatives [21, 22]. More-
over, their results never reach more than 10% over classical
list-scheduling techniques [17].

Conversely, clustering algorithms are two-phase
methods of scheduling. Before task scheduling, a task clus-
tering determines the optimal number of PE on which to
schedule tasks according to their granularities. The gener-
ated clusters are then merged in order to be executed on
a fixed number of PE [14]. These methods have good
scheduling properties, but finding a clustering of a task
graph to minimize the overall execution time is difficult
and expensive. In addition, duplication-based algorithms
can inherently produce optimal solutions but cannot be im-
plemented due to their high complexity [15].

The simplicity and the rapidity of list-scheduling al-
gorithms make them well-adapted for simple hardware im-
plementations. Even if their results may be less efficient
in simulation due to lack of physical considerations, fa-
voring simple and fast scheduling prevents from spend-
ing time to schedule tasks and therefore decreases the
makespan. Firstly, an ordered list of tasks is constructed ac-
cording to a predetermined policy (Longest/Shortest-Task-
First, First/Last-In-First-Out, etc.). Finally, tasks are se-
lected in the order and scheduled to one or more PE.

Since our problem is quite similar to two-dimensional
bin-packing, the literature is composed of many differ-
ent heuristics dedicated to particular scheduling features.
Common simplifying assumptions include availability of
unlimited numbers of processors, uniform task execution,
no precedence constrained, non-contiguous allocation, one
processor per task, etc. [11, 12]. These last years, more
and more complex heuristics have been developed to obtain
better approximations, without considering possible and ef-
ficient hardware implementations.

For instance, Blazewicz et al. investigate the problem
of finding exact solutions in the case where all the tasks
have the same execution time [4]. Some of these heuris-
tics, not far from our study, reach good performance ratios
but require complex algorithms [2]. Jansen et al. consider
the scheduling of n independent tasks to minimize the max-
imum completion time [9]. They assume that each task can
be executed with only one PE, and propose a fully polyno-
mial approximation. They also envisage minimizing both
the makespan and a global cost incured by each task. Even
if the algorithm complexity is low, the proposed solution
remains difficult to be efficiently implemented in a hard-
ware solution. In [1], different sorted rules are presented
like the Greatest number of immediate successors first or
the Maximum of the sum of the processing times of all
successors first. Nevertheless, if scheduling tasks in con-
sidering precedence constraints is well-adapted for acyclic
graphs, these algorithms increase the execution time. In
[18], Topcuoglu et al. propose two algorithms : the Het-
erogeneous Earliest-Finish-Time (HEFT) and the Critical-
Path-On-a-Processor (CPOP) algorithm. In the HEFT al-
gorithm, the task priority depends on the remaining time
of its execution in order to minimize the completion time
of each PE. The CPOP algorithm allows us to minimize a
critical cost associated with each task. These approaches
could not be used in an asynchronous circuit since timing
is unknown. Moreover, the current time execution of each
task is unnecessary for non-real-time task scheduling. In
addition, a dynamic scheduling increases the energy con-
sumption due to constant updating of memories.

It is important to bring appropriate solutions even if
they turn out longer makespan. In addition, the schedul-
ing complexity must be distributed with the allocation pro-
cess in order to dispatch the algorithm complexity. First,
a simple sorting like Longest-Task-First (LTF) or LArgest-
Task-First (LATF), can be chosen. Furthermore, Belhale
et al. give an approximation algorithm with polynomial
running time for the multiprocessor scheduling problem,
under the additional constraint that work done by tasks is
non-decreasing in the number of processors (LATF) [3].
In addition, Kequin Li et al. make a probabilistic analysis
for the LATF scheduling and show that the suboptimality
bounds on the makespan is not worse than 2 [13]. Accord-
ing to these results, we decided to use the LATF scheduling
for its quite efficient average-case performance ratio. In ad-
dition, a large variety of different heuristics have been pro-
posed, but few PE allotment techniques exist. Yet, their ef-
ficiency takes an important part in task scheduling [8]. The
main proposition consists in parallelizing tasks (malleable
tasks), but dynamic resource allocation can also bring sig-
nificant improvements. In addition to a static scheduling,
a dynamic and on-line resource allocation can dynamically
assign tasks according to the current availability of system
resources.

In the following section, we present our static
scheduling algorithm. This heuristic is merged with a novel
dynamic resource allocation strategy.
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Figure 1. A directed acyclic graph scheduling

3 The LLD Scheduling

The RAC is a hardware component supporting the im-
plementation of Control Flow Graph (CFG). It is a self-
reconfigurable and asynchronous architecture, which sup-
ports a high level of control parallelism. The management
of exclusion and synchronization mechanisms is done au-
tomatically and the RAC only delivers independent tasks
without inter-processing contentions [20]. Due to these in-
teresting features, we associate this component to our sim-
ple heuristic named LLD to carry out an efficient schedul-
ing.

In a directed acyclic graph, precedence constraints
must be respected. For instance in figure 1, tasks T1, T2

and T3 can start only after the execution of task T0. This
set of tasks constitute a level of execution. The structure
of the RAC can explicitely provide these levels of execu-
tion in respecting synchronizations between tasks, accesses
to shared memories or even disponibilities of the commu-
nication network. As soon as all the tasks of the current
level have been assigned, the RAC will build another level
with every task whose precedence tasks have been exe-
cuted. Consequently, the execution of an application graph
consists in processing level-by-level independent tasks.

Let δ(Ti) be the number of PE needed to execute the
task Ti and τ(Ti) its execution time. First, our schedul-
ing algorithm sorts out tasks of an execution level accord-
ing to a non-increasing order of PE needed for their ex-
ecution. Consider a sorted list C of n independent tasks
such that C = {T1, T2, ...Tn}. Then, we assume that
δ(T1) ≥ δ(T2)... ≥ δ(Tn). Moreover, if the number of PE
for the execution of a task is equal to an other task, they are
sorted out into non-increasing order of their computation
time. For instance, if δ(Ti) = δ(Tj) and τ(Ti) ≥ τ(Tj)
then Ti is to be executed before Tj .

Once the list is sorted, the allocation of tasks begins.
The number of free PE is checked. According to this num-
ber, the most priority task is loaded on allocated resources.
Then, the number of free PE is updated and this process is
repeated until the assignation of all the tasks of the current
level is done.

This algorithm, called Level-by-level Largest-task-
first with Dynamic-resource-occupation (LLD), has an
O(n×P ) complexity, but can be efficiently used as a hard-
ware scheduling mechanism.

In figure 1, a scheduling example is presented. The
scheduling named (a) is the result obtained after the LLD
algorithm and the scheduling (b) after the First-Come-first-
Serve (FCFS) algorithm. After the execution of the first
task T0, the list C of ready tasks, which must be scheduled,
is composed of T1, T2, T3. Then, the LLD algorithm will
schedule the task of this list C by their non-increasing order
of PE needed, i.e. T1, T3 and T2. At the end of the assigna-
tion of these tasks, a new list is created composed of ready
tasks (here T4 because T1 has finished its execution). Since
there is free resources, T4 is assigned immediately. Finally,
the scheduling of all the application is done in following the
same rules. In the FCFS scheduling, tasks are scheduled by
their date of arrival without any policy, and can generate a
less efficient scheduling as represented Figure 1 (b).

In the next section, a detailed comparison study is pre-
sented in order to compare our scheduling algorithm with
other list-scheduling heuristics. Again, the acceleration and
the PE occupation rate are considered. Actually, these two
criteria mainly represent the quality of a scheduling related
to the maximum completion time minimization.

4 Implementation and Evaluation

Amongst many different heuristics, we choose to com-
pare our algorithm with others, which have an equiva-
lent hardware implementation complexity and computa-
tion time. These algorithms are the First-Come-First-
Serve (FCFS), the Longest/Shortest-Task-First (LTF-STF),
the LATF, the SLEAT, the Next-Fit-Decreasing-Height
(NFDH), the First-Fit-Decreasing-Height (FFDH) and the
First-Fit-Increasing-Height (FFIH) scheduling algorithms.
We have also used our dynamic resource allocation method
with some of these schemes in order to underline its effi-
ciency. These algorithms are marked with the DRO exten-
sion. However, the performance comparison would not be
fair unless we also compare these heuristics to the upper
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Figure 2. Results and comparisons

limit that we could reach. For this reason, we have imple-
mented an IDEAL and an OPTIMAL algorithm.

FCFS scheduling This algorithm schedules tasks
without sorting them according to their arrival date. It con-
stitutes our scheduling reference.

LTF/STF/LATF scheduling The LTF sequentially
packs the remaining tasks having the longest running time
into the schedule. Let w be the makespan of a given task
system and w∗ be the makespan of its optimal scheduling,
then w ≤ 2w∗ + hmax, where hmax is the maximum ex-
ecution time [19]. The STF algorithm consists in sorting
tasks by their non-decreasing time of computation. More-
over, the LATF algorithm sorts out tasks according to a
non-increasing order of PE needed for their execution.

SLEAT scheduling First, this algorithm schedules
iteratively all the tasks requiring more than P/2 PE. Then,
the remaining tasks are sorted out into a non-increasing
time execution order, and two groups of P/2 contiguous
processors are carried out. Finally, tasks are scheduled ei-
ther on the first or on the second processor group depending
on which has the current smaller makespan. It has a subop-
timality bound of 2.5 [16].

NFDH/FFDH/FFIH scheduling These algorithms
were developed by Coffman et al. [5]. The NFDH al-
gorithm packs the next task, left justified, on the current
level if its fits. Otherwise the level is closed, a new cur-
rent level is created (as a vertical line on the top of the
longest task packed on the current level), and the task is

packed on it, left justified. On the contrary, the FFDH
algorithm does not close any level. It was shown that
FFDH(C) ≤ 1.7 × OPT (C) + 1. Finally, the FFIH
algorithm is very similar to the FFDH algorithm. The only
difference remains in the request-list, which is sorted in a
non-decreasing order. This decreases the scheduling effi-
ciency but reduces the average waiting time for task execu-
tion, which can be interesting for interactive usage.

IDEAL/OPTIMAL scheduling All these algorithms
respect precedence constraints imposed by application
graphs. The IDEAL algorithm schedules tasks in compact-
ing them as much as possible without respecting the par-
allelism and the number of PE imposed by each task. Ac-
tually, this algorithm does not consider HW feasibility, but
it represents the upper limit that any scheduling heuristic
could reach. The OPTIMAL algorithm is not a heuristic.
This algorithm tests all scheduling possibilities and keeps
the solution that owns the shortest makespan. Of course,
since this problem is NP-complete, this algorithm needs
long computation and only few cases have been evaluated.

In order to evaluate the quality of each algorithm, a
large amount of independent task lists have been generated
with a uniform probability distribution to form execution
levels. We assume that τ(Ti) ∈ [1..100], δ(Ti) ∈ [1..P ]
with P = {4, 8, 16, 32} and the number of independent
task of each scheduling list is about 30. A uniform distri-
bution analysis can demonstrate the generic efficiency of
an algorithm. Moreover, a power of two of PE is chosen to
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Figure 3. Average acceleration comparison with the IDEAL and
OPTIMAL algorithms

carry out a comparison with other limited algorithms. The
acceleration λ(H) of a heuristic H , in comparison with no
particular scheduling policy (FCFS) for the scheduling of a
list C is:

λ(H) = FCFS(C)−H(C)
FCFS(C) .

Thus for instance, the acceleration λ(LLD) of the example
depicted Figure 1 approximates 21% and the PE occupa-
tion rate is about 86.7% compared to 68.4% with a FCFS
scheduling.

According to figure 2 (a,b), the quality of the STF
or the LTF scheduling are quite similar and better than the
NFDH. In addition, it is important to note that the LATF
algorithm has effectively the best result compared to STF,
LTF or SLEAT heuristics. It was expected that the PE oc-
cupation rate would be better since the aim of this schedul-
ing is to favor the resource occupation, but its average ac-
celeration shows that its behaviour remains particularly ef-
ficient whatever the number of PE is. The SLEAT algo-
rithm reaches good performances but they decrease with
the number of PE. In fact, this heuristic has an important
drawback since each task, which uses more than P/2 PE,
is sequentially executed without considering free resources.
For instance, a task using 17 PE on a 32 PE platform will
allocate only 53% of its resources during all the task execu-
tion. This algorithm can reach good performances if most
of tasks use less than P/2 PE or if few PE are envisaged.

Finally, the LLD algorithm introduced in this paper
reaches the best results. It surpasses every tested heuristics
in maximum, minimum and average acceleration as well as
PE occupation. Moreover, scheduling results obtained with
the IDEAL algorithm are finally not far from our results.
Thus, any heuristics with better performances than the LLD
would have at most only an increase of 7%. Moreover, the
necessary effort to reach this low improvement increases
drastically the complexity of a HW implementation. In ad-
dition, the increase of performance would be lost by the
latence generated by the complexity of these algorithms or
the time spent by HW computations. In figure 2 (c,d,e), the
frequency of results obtained by the LLD are shown. As

expected, gaussian curves are generally obtained, but the
LLD algorithm with 4 PE has an exponential behaviour.
The performance of our dynamic allocation improves sig-
nificantly the PE occupation or the average acceleration of
the LLD compared to the LATF. Furthermore, only algo-
rithms with a specific assignation policy can reach good
performances. It has a significant impact on the quality of
a task scheduling.

Results obtained by the IDEAL algorithm present an
unreachable limit. Even the best heuristic could not obtain
these results, since the IDEAL algorithm does not take into
account HW constraints. On the other hand, the OPTIMAL
algorithm represents a reachable limit that best heuristics
can approach and according to the figure 3, we can estimate
that its results are between those obtained by the IDEAL
and the LLD algorithms. Consequently, we can consider
that possible improvements brought by any other heuristics
for our problem would have a low interest.

Nonetheless, the performances of our algorithm de-
crease when little value of δ(Ti) are favored. Actually, if
we consider for instance an exponential distribution with
a mean µ = P/4 (figure 4), we demonstrate that even if
the LLD still keeps a high level of quality, when tasks need
less parallelism for their execution, the efficiency of our
heuristic decreases. However, compared to its average re-
sult the LLD scheduling algorithm remains particularly ef-
fective and constant.

5 Summary

In this paper, we have introduced a new algorithm, called
LLD, for scheduling application graphs onto a distributed
processing system, such as MPSoC. Based on a comparison
study using a large set of random task lists, the LLD heuris-
tic significantly outperformed the other algorithms with an
equivalent complexity, in term of acceleration compared to
the FCFS algorithm (about 20% of improvements) and PE
occupation. The scheduling of precedence constraints par-
allel task with this algorithm is particularly efficient and
constant whatever the application is. Its dynamic allocation
mechanism improves the PE occupation and consequently
reduces the maximum completion time. Besides, it can be
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easily added to other heuristics and efficiently implemented
for distributed control dispatching. Moreover, the manage-
ment of heterogeneous resources just consists in consider-
ing for each task only specific free resources. Finally, the
main advantage of this list scheduling is its low complexity,
that makes it very attractive for a possible HW implemen-
tation.
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