
Speeding up Subset Seed Algorithm for Intensive
Protein Sequence Comparison
Van Hoa NGUYEN
IRISA/INRIA Rennes

Rennes, France
Email: vhnguyen@irisa.fr

Dominique LAVENIER
CNRS/IRISA

Rennes, France
Email: lavenier@irisa.fr

Abstract—Sequence similarity search is a common and re-
peated task in molecular biology. The rapid growth of genomic
databases leads to the need of speeding up the treatment of
this task. In this paper, we present a subset seed algorithm
for intensive protein sequence comparison. We have accelerated
this algorithm by using indexing technique and fine grained
parallelism of GPU and SIMD instructions. We have implemented
two programs: iBLASTP, iTBLASTN. The GPU (SIMD) imple-
mentation of the two programs achieves a speed up ranging from
5.5 to 10 (4 to 5.6) compared to the BLASTP and TBLASTN of
the BLAST program family, with comparable sensitivity.

I. INTRODUCTION

The sequence similarity search finds similar segments, or
local similarities, between two DNA sequences or protein
sequences, measured by match, mismatch and gap scores.
To establish similarity, an alignment score is calculated. Its
objective is to locate similar regions in the DNA or protein
sequences because high degree of similarity often implies
similar function or structure. A typical search is to query a
bank with a gene whose function is unknown. The results of
the request correspond to similar segments.

Recent biotechnology improvements in the sequencing area
lead to an increasing amount of genomic databases. Genbank
[1], for example, contains more than 180 billion of nucleotides
(November 2007) and its size is multiplied by a factor ranging
from 1.4 to 1.5 every year. Thus, the similarity search is
a very time consuming task which may need the use of
supercomputers.

Similarity search is primarily a data content search. Banks
are systematically scanned from the first to the last sequence.
It is a challenging task requiring a huge computing power.
With the stagnation of microprocessor frequencies, there is a
great interest in optimizing this task.

There are several algorithms to search alignments. One of
the first is the Smith-Waterman algorithm developed in 1981
[15]. It uses dynamic programming techniques and has a
quadratic complexity. Latter ones, developed in 1990 [12] [13],
as the BLAST program family, are based on heuristic. The
key of the BLAST heuristic is that a statistically significant
alignment is likely to contain a common word of W characters.
Thus, instead of scanning the whole search space, the search
only focus to these specific common words, called anchor
points. Consequently, the computation time is drastically re-
duced. However, the heuristic does not guarantee to detect

the best alignments, but it reports most of the significant
alignments.

More recently, several works have proposed to use spaced
seeds to perform detection of anchor point, including Part-
ternHunter [10], PartternHunter II [9]. Instead of considering
a word of W contiguous characters as a seed, a word of no
necessarily consecutive W characters may be considered. More
precisely, a spaced seed looks like a binary mask string, such
as 10101, where matches in all positions 1 are required for
an anchor point; 0 denotes allowed mismatches. The next
seed generation doesn’t consider one seed but a set of several
seeds which can be of different length and possibly made
of different spaced seeds (multiple seeds) [8]. Another seed
family (subset seed) groups different characters in the same
set [6], still providing better expressiveness.

This paper presents an effective implementation of a re-
cently proposed seed-based heuristic, called subset seed, that
exploits fine-grained parallelism using data indexing for inten-
sive protein sequence comparison, such as the comparison of
two protein banks or the comparison of a protein bank and
a genome translated to its six reading frames. We use Intel
SSE2 SIMD instructions and the SIMD architecture of GPU
(Graphics Processing Unit) device to speed up critical section
of the algorithm.

The remainder of this paper is organized as follows. In
section 2, a brief background of the subset seed algorithm
is given. Section 3 describes how to use Intel SSE2 SIMD
instructions and SIMD architecture of GPU for implementing
this algorithm. In section 4, we present numerical test results
before section 5 concluding and presenting future work.

II. SIMILARITY SEARCH

In this section we present the subset seed similarity search
algorihtm, including seed-based heuristic.

A. Seed based similarity search

The idea of heuristic search is based on an observation: In
general, significant alignments have a region of high similarity
which is characterized by a zone of W identical characters -
word - between two sequences that make up this alignment.
Therefore, first, we can locate places where these words
appear. When the same word is located on two sequences,
it provides an anchor point for calculating alignment by

extending to the right and to the left the number of match
between identical symbols. If the extension finds a significant
similarity (measured in the number of match / mismatch),
a final phase is processed to build a better alignment by
considering the inclusion or deletion of symbols (gap).

The scheme below shows a construction example of align-
ment between two protein sequences. The word ARV, in both
sequences, serves as an anchor point (stage 1). Starting from
this anchor point, we extend to the right and to the left for
getting an interesting match / mismatch ratio (stage 2). Finally,
we extend the alignment for taking into account the errors of
gap (stage 3).

stage #1
K V I T A R V T G S A Q W C D N T G V K N I H M

| | |
K L I S A R V K G S Q F C T N P T G M K A N I H

stage #2
K V I T A R V T G S A Q W C D N T G V K N I H M
| | | | | | | | | |
K L I S A R V K G S Q F C T N P T G M K A N I H

stage #3
K V I T A R V T G S A Q W C D N - T G V K - N I H
| | | | | | | | | | | | | | | |
K L I S A R V K G S - Q F C T N P T G M K A N I H

This is a 3-stage process: (1) anchor point detection; (2)
ungapped alignment; (3) gapped alignment. This heuristic is
implemented with many variants in a number of programs
such as programs of the BLAST family which are the reference
programs in bioinformatics. Depending on the type of database
inputs, each BLAST [12] [13] program has a different name:
BLASTP when the query is an amino acid sequence and the
database is a protein bank, TBLASTN when the query is an
amino acid sequence and the database is a nucleotide bank.

In intensive protein sequence comparison between two
banks (bank1 and bank2), BLASTP executes comparison of
sequence S (bank1) against the set of sequences in bank2.
It first searches for all hits between sequence S and bank2
by using an index structure such as a lookup table. Then,
these hits are extended, first without gaps, then allowing them.
Hits meeting specified threshold are returned as statistically
significant alignments.

The advantage of BLASTP is its speed compared to dy-
namic programming techniques. The speed depends on the
hit size. Actually, longer the hit size, lower the possibility to
locate anchor point.

B. Subset seed similarity search
In the context of intensive protein sequence computation of

two banks: bank1 (N sequences) and bank2, BLASTP must
scan and process bank2 N times. To avoid this drawback, we
dynamically index the two banks in main memory. Based on
this idea, the two banks are scanned only once just for making
the index.

The advantage of a double indexing is that the systematical
scan of bank2 disappears. Through an appropriate indexing
structure, we can directly point to all identical words in the
two banks. If a W-AA word appears |nb1| times in bank1 and
|nb2| times in bank2, there are |nb1|×|nb2| hits. It means that
there are also |nb1| × |nb2| ungapped alignments to calculate.

TABLE I
IBLASTP GENERIC ALGORITHM

1: index1 = make index (bank1) #stage 0
2: index2 = make index (bank2)
3: for all possible seeds
4: construct neighboring - block nb1 #stage 1
5: construct neighboring - block nb2
6: for each subsequence of nb1
7: for each subsequence of nb2
8: compute ungapped alignment #stage 2
9: if score ≥ S1

10: compute small gapped alignment #stage 3.1
11: if score ≥ S2

12: compute full gapped alignment #stage 3.2
13: if score ≥ S3

14: traceback & display alignment #stage 4

The subset seed algorithm (iBLASTP) proceeds in 5 succes-
sive stages as shown on TABLE I. Stage 0 index the two banks,
stage 1 constructs two neighboring blocks, stage 2 performs
ungapped alignments, stage 3 computes gapped alignments
and stage 4 displays alignments. We describe in detail these
stages in the following subsections.
Stage 0: Bank indexing. Spaced seeds [9] and their relative,
vector seeds [8], can augment selectivity and reduce the false
positive rate in the seeding step. But spaced seeds can not dis-
tinguish between different types of mismatches in the case of
protein sequence. Because all amino-acids are not equivalent,
we can create groups of characters. Based on the groups, [6]
[7] created subset seeds, the extension of spaced seeds. Subset
seeds have an intermediate expressiveness between spaced and
vector seeds but they allow an efficient hashing method to
locate hit. The main advantage of subset seeds is that they
provide a powerful seed definition and, in the same time,
preserves the possibility of direct indexing. A subset seed of W
characters (see detail in [3]) is defined as a word (s1s2...sW).
Figure 1 presents a subset seed example of 4 characters.

Fig. 1. Subset seed example with length equal to 4

To build indexing structure for bank1, we store all sequences
into memory. Then each sequence is parsed into fixed length
overlapping words of W characters - W-AA words. Each W-
AA word is matched in subset seed for finding a corresponding
word. For example, to apply the subset seed of Figure 1, the
words AQAA, APAA, ASAA are translated to a similar word
AgAA (or a seed). Furthermore, each occurrence of W-AA
word has a position (index). We use a buffer integer (size
equal to size of bank1) to store all positions of occurrences
of similar W-AA words (translated), for example the words
AQAA, APAA, ASAA. The positions of similar W-AA words
(ex. AgAA) are considered as a list of W-AA words. We have
20W (20 is the number of amino acids) lists corresponding to

20W W-AA words. The number of linked lists depends on the
subset seed being used. For example, if W = 4, there are 204

words: AAAA, ..., YYYY and when applying a subset seed
such as in Figure 1, there are 8800 (20× 2× 11× 20) linked
lists. We use an other buffer to store the heads of the linked
lists.

Bank2 is processed in the same way. At the end of this
stage, for each W-AA word (in subset seed), we have two
lists which content |nb1| occurrence positions of W-AA word
in bank1 and |nb2| occurrence positions of W-AA word in
bank2.
Stage 1: Construct two neighboring blocks. Hits detected
in the first stage are considered as the base of ungapped
alignments. The objective is to be able to rapidly decide if
one hit has favorable environment to build an alignment. The
indexing structure above gives us the lists of positions of W-
AA words and their neighboring knowledge for performing
ungapped alignments. In this stage, for each W-AA word, we
construct two neighboring blocks: one block (nb1) for bank1
and another block (nb2) for bank2. To build neighboring block
nb1, index1 provides a list of all W-AA word positions, then
for each position a subsequence is copied. Each subsequence
contents W-AA word and its neighboring knowledge. Two
blocks of subsequences allow us to reuse cache memory when
we perform ungapped alignment.
Stage 2: Ungapped alignments. For each W-AA word, we
perform |nb1|×|nb2| ungapped alignments of two neighboring
blocks. More precisely, for each subsequence in block nb1, we
calculate the ungapped score with |nb2| subsequences in block
nb2. Ungapped extension is performed on subsequences of
bounded length, and ignores insertion and deletion events. The
aim is to quickly compute a score according to a substitution-
score matrix. Starting from 0, the score is increased or
decreased depending on the substitution-score values in this
matrix. If ungapped extension score is superior than a specified
threshold S1, this ungapped alignment is passed to the next
stage.
Stage 3: Gapped alignments. We use the dynamic program-
ming technique to build gapped alignments. This stage is
divided into two sub-stages: The first computes small gapped
alignments (stage 3.1), it aims to limit the searching space of
dynamic programming. In this procedure, there is a constraint
on the number of allowed gap. If score exceeds a specified
threshold S2, the standard dynamic programming procedure
is launched (stage 3-2).

A gapped alignment contents at least one ungapped align-
ment. If a gapped alignment contents two ungapped align-
ments, they are not always on the same diagonal. For this
reason, sometime, we must recalculate gapped alignments for
different ungapped alignments. We can avoid this problem
by storing all ungapped alignments contented in the gapped
alignments in a list, and performing gapped alignment only
for hit which doesn’t belong to this list.
stage 4: Traceback & display. In this stage, trace-back infor-
mation optimizes alignments recorded in previous stage and
displays them to user.

The structure of our approach has been developed with
objective of exploiting fine grained parallelism on specific
hardware structure. Thus, the size of the subsequences in stage
2 and 3-1 is fixed.

C. Profiling of the code

We have implemented two sequential programs: iBLASTP
and iTBLASTN by reference to the programs BLASTP and
TBLASTN programs of the BLAST family. The first compares
two protein banks and the second compares a protein bank
with a genome translated into 6 reading frames (6 ways to
match a DNA to proteins). Both versions run on standard
processors. They allow us to measure more precisely the
speed-up of fine grained parallelism.

We have examined the average runtime for each stage.
Results are shown in TABLE II. We found that the second
and third (3-1) stages consumed respectively 60-72% and 23-
25% of the total execution time.

TABLE II
AVERAGE RUNTIME FOR EACH STAGE

stages 0 1 2 3-1 3-2 4
iBLASTP 0,4 % 0,6 % 60 % 25 % 11 % 3%

iTBLASTN 0,4 % 0,6 % 72 % 23 % 2,7 % 1,3%

III. SPEEDING UP SUBSET SEED ALGORITHM USING SIMD
ARCHITECTURE

The processing time of ungapped and small gapped align-
ment takes most of the time. Obviously, to get a significant
speed up, execution time of these stages needs to be reduced.
To increase the performance of these stages, we exploit two
types of fine-grained parallelism: SIMD instructions of modern
microprocessors and SIMD architecture of recent GPU.

A. SIMD instructions

With introduction of MMX microprocessors in 1997, Intel
made computing with SIMD technology available in a general-
purpose microprocessor. Multimedia extensions exploit fine-
grained parallelism, where computations are split into sub-
words with independent units operating on them simultane-
ously. SIMD processing was enhanced with the addition of
the SSE2 (Streaming SIMD Extension) in the Pentium 4
microprocessor. It permits handing sixteen simultaneous byte
operations in 128-bit XMM registers.

1) Ungapped alignments: Instead of performing |nb1| ×
|nb2| ungapped alignments for a W-AA word by using the
Single Instruction Single Data (SISD), we have used SIMD
instructions. In this case, a score fits into 1 or 2 bytes instead
of 4 bytes.

The SIMD register simultaneously contains k scores related
to k subsequences of block nb1. When k subsequences are
computed with all subsequences of block nb2, a simple speed
improvement is achieved by creating a kind of profile score for
the k subsequences. This profile score is a specific substitution-
score matrix of k subsequences. Instead of indexing the orig-
inal substitution-score matrix by subsequences symbols, the

new matrix is indexed by the position on the k subsequences
and a subsequence symbol (block nb2).

This profile score permits to load substitution-scores in a
single read operation. When using 1 byte integer k = 16 and
when using 2 byte integer k = 8. Each element of the SIMD
registers maps one subsequence. The first element maps s1 1,
the second element maps s1 2, still the last element maps
s1 k. Thus, score(i) (between k sequences in block nb1 and
one subsequence of block nb2) is considered as a score result
between the i-th subsequence and the subsequence in block
nb2.

When k = 16, the 128-bit wide registers are divided into
16 8-bit elements. Dividing the registers into 8-bit elements
limits the range of scores from 0 to 255. In mots cases, the
scores fit in the 8-bit range unless the subsequences are totaly
similar.

block nb1 block nb2
s1_1: ..K C A G A A S D.. s2_1: ..N M A H A A S Q..
s1_2: ..A G A S A A V N..
s1_3: ..L N A A A A W E..
s1_4: ..Y E A N A A L T..
s1_5: ..M T A S A A K H..
s1_6: ..S H A G A A S Q..
s1_7: ..W Q A D A A T S..
s1_8: ..T S A E A A E M..

The above scheme illustrates an ungapped alignment com-
putation between 8 subsequences in block nb1 with one
subsequence in block nb2 when the position on 8 subsequences
is at the beginning of seed and subsequence symbol (s1 of
black nb2) is ”A”.

2) Small gapped alignments: In addition, we also use
SIMD instructions to compute small gapped alignments. The
ungapped extensions passed to the stage 3.1 are stored in a
list. When this list contains at least K elements, all elements
on this list are considered for small gapped alignment with
SIMD instructions.

Unlike ungapped alignment, if there is one ungapped align-
ment passed equally there is a pair of subsequences. The pair
of subsequences in small gapped alignment is usually similar.
Furthermore, the length of subsequence is longer than the
length of subsequence in ungapped alignment. Consequently,
when k =16, scores usually fit out the range of 8-bit. Thus,
we decided for a unique value of k = 8.

In addition, we must perform only one small gapped align-
ment for a pair of subsequences. The computing begins at
seed position, extends to the right and then to the left. Thus,
we cannot use the subsequence profile because it is just used
once. Consequently, in the Smith-Waterman algorithm [15],
to compute each cell score, the value of substitution-score
must be sequentially calculated. More precisely, symbols from
the two subsequences have to be read and look-up into the
substitution-score matrix in order to calculate the correspond-
ing substitution-score. This process has to be repeated for the
8 elements in the SIMD register.

The scheme below illustrates small gapped alignment com-
putation for 8 pairs of subsequences. The computing begins

at seed position, extends to the right and then to the left. The
score of pair(i) is a sum of score(i) of two extentions.

bank1 bank2
s1_1: V..K S A G A A S..V s2_1: N..A D A H A A G..N
s1_2: N..R N A S A A F..S s2_2: G..Q Q A G A A F..L
s1_3: K..V R A A A A K..M s2_3: T..G Q A N A A K..G
s1_4: F..I V A N A A Q..K s2_4: F..Y G A P A A I..T
s1_5: A..R I A S G A E..I s2_5: D..L I A K A A E..F
s1_6: G..H R A G A A L..F s2_6: C..H L A R A A V..A
s1_7: H..D L A D A A E..E s2_7: Y..N F A N A A D..G
s1_8: S..R S A E A A Q..A s2_8: I..G F A T A A Q..S

B. SIMD architecture of GPU

During the last decade, GPUs [4] have been developed as
highly specialized processors for the acceleration of raster
graphics. The GPU has several advantages over CPU ar-
chitectures for highly parallel intensive workloads, including
higher memory bandwidth, significantly higher floating-point
capabilities, and thousands of hardware thread contexts with
hundreds of parallel compute pipelines executing programs in
a single instruction multiple data (SIMD) mode.

NVIDIA has introduced a new GPU, i.e. Geforce 8800 GTX
and a C-language programming called CUDA [4] (Compute
Unified Device Architecture). Geforce 8800 GTX architecture
comprises 16 multiprocessors. Each multiprocessor has 8 SPs
(streaming processors) for a total of 128 SPs. Each group
of 8 SPs shares one L1 data cache. A SP contains a scalar
ALU (Arithmetic Logic Unit) and can perform floating point
operations. Instructions are executed in a SIMD mode.

The threads on GPU are organized in blocks. The grid of
thread blocks is executed on the device. Thread blocks have
the same dimensions. A thread block is processed by only
one multiprocessor, so that the shared memory space resides
in the on-chip shared memory leading to very fast memory
accesses. A multiprocessor can process several thread blocks
concurrently by partitioning among the set of registers and the
shared memory.

For each W-AA word, |nb1| × |nb2| ungapped alignments
are performed in parallel by the GPU. The ungapped exten-
sions passed to the stage 3.1 are stored in a list. When this
list contains at least K elements, all elements on this list are
considered for small gapped alignment on the GPU.

1) Ungapped alignments: We implemented ungapped
alignment stage on graphic card by using the matrix mul-
tiplication algorithm [4]. For each W-AA word, there are
two subsequence blocks. Suppose that block A[wA, hA]
corresponds to block nb1; wA is the length of subsequences,
hA is the number of subsequences in block nb1; block
B[wB, hB] corresponds to block nb2, wB is the number of
subsequences in block nb2, hB is the length of subsequences.
On the other hand, block B is the transposition of block nb2.
Furthermore, we use an other block C[hA, wB] to store scores
of ungapped alignments between block nb1 and block nb2. The
value of each cell[i,j] in block C corresponds to the score of
subsequence j (row j of block nb1) and subsequence i (column
i of block nb2).

Fig. 2. Computing ungapped alignment on GPU.

The task of |nb1| × |nb2| ungapped alignments between
block A and block B is split among threads on GPU as
followed: each thread block is responsible for computing on
square subblock Csub of C. Each thread within the block is
responsible for computing one element of Csub (Figure 2).
The dimension block size of Csub is chosen equal to 16. Thus,
there are hA

16 ×wB
16 thread blocks in grid. Threads within thread

block share memory each other.
Two subsequence blocks are mapped to the texture memory

of the GPU. The texture memory is shared by all the proces-
sors, and speed up comes from the texture memory space by
being implemented as a read-only region of device memory.
At the beginning of the computation, each thread loads a
character from the texture memory to shared memory by a
texture reference, called texture fetching.

Fig. 3. Computing small gapped alignment on GPU.

2) Small gapped alignments: The use of high performance
computing on GPU is efficient only to perform large tasks.
Thus, we use the GPU to execute small gapped alignments
when there are at least K elements ready for computation.
With K small gapped alignments, there are 2K extensions
extending in two directions. To be enable to compute 2K
extensions on the GPU, we have to construct two subsequence
blocks as already done for ungapped alignment: one block
(A) for bank1 and one block (B) for bank2. Compared to
ungapped alignment, there is a difference: for one small
gapped alignment, we copy two subsequences in bank1 - one

at the left and one at the right of seed - to block A, and two
subsequences (bank2) to block B. Consequently, there are 2K
subsequences in each block. The GPU divides 2K extensions
into thread blocks, each thread within a block is responsible
for computing one extension.

The form of thread block is 1 × 256. Thus, there are 2K
256

thread blocks. Two subsequence blocks are mapped to the
texture memory. At the beginning of the computation, each
thread copies its pair of subsequences from the texture memory
by the texture reference to its local memory for reducing
memory access conflict. The scores of 2K extensions are stored
in block C[2K,1] (Figure 3).

IV. RESULTS

We tested the implementations on an Intel 2.6 GHz proces-
sor with 2 MB cache L2, and 2 Gb RAM, running Linux
(fedora 6). We used the graphic card GeForce 8800 GTX
(version GPU). The characteristics of this board are as follows:
• 16 multiprocessors SIMD at 675 MHz; each multiproces-

sor is composed of eight processors running at twice the
clock frequency;

• maximum number of threads per block: 512;
• amount of device memory: 768 MB at 1.8 GHz;
• maximum bandwidth observed between the computer

memory and the device memory: 2 GB/s.
The following banks have been used for testing: (1) a protein

bank contenting 141,708 sequences from the PIR-Protein bank
(the version 80 01/2005) with an average length of 340; (2)
a nucleotide bank contenting 27,360 sequences (gbvrt3 in
GenBank, the version 156) with an average length of 5,454; (3)
a set of four protein banks (extracted from the SWISS-PROT
bank, the version 05/2007) contenting respectively 5,000,
10,000, 20,000, and 40,000 sequences with an average length
of 367.

The execution time is calculated using the Linux command,
”time”. The BLASTP and TBLASTN of the BLAST family
(version 2.2.16, 2007) were launched with default parameters,
except for the statistical parameter, E-value, that is chosen at
10−3, which is a reasonable value in a context of intensive
sequence comparison.

The sensitivity is evaluated in relation to the number of
alignments found by the two programs. Specifically, we test
whether alignments begin and end at the same places in the
two banks with a margin of P % calculated on the average
size of the two alignments. For example, to compare two
alignments of size 100 at 5 %, we check that the start and
stop positions of the alignments are in the range of 5 amino
acids.

TABLE III compares execution time of (SIMD/GPU)
iBLASTP and BLASTP with parameter set as: PIR-Protein
bank and four SWISS-PROT (SWP) banks, TABLE IV
compares execution time of (SIMD/GPU) iTBLASTN and
TBLASTN with parameter set as: GenBank and four SWISS-
PROT banks. Acceleration factors of 4.2 and 5.6 are respec-
tively obtained for SIMD iBLASTP and SIMD iTBLASTN.

TABLE III
EXECUTION TIME OF TWO IBLASTP PROGRAMS AND BLASTP

nb. seq. BLASTP GPU iBLASTP SIMD iBLASTP
(SWP) (sec) (sec) speedup (sec) speedup

5k 3,521 640 5.5 857 4.1
10k 6,832 1,186 5.6 1,585 4.3
20k 13,597 2,420 5.6 3,188 4.2
40k 26,111 4,581 5.6 6,053 4.3

TABLE IV
EXECUTION TIME OF TWO ITBLASTN PROGRAMS AND TBLASTN

nb. seq. TBLASTN GPU iTBLASTN SIMD iTBLASTN
(SWP) (sec) (sec) speedup (sec) speedup

5k 7,063 773 9.1 1,328 5.3
10k 13,597 1,373 10.0 2,394 5.6
20k 27,147 2,613 10.4 4,554 5.8
40k 52,232 4,942 10.5 8,554 6.1

Fig. 4. Speed up of SIMD and GPU for ungapped alignment

Acceleration factors of 5.5 and 10 are respectively obtained
for GPU iBLASTP and GPU iTBLASTN.

With fine grained parallelism of SIMD instruction, the
performance of ungapped extension achieve a speed up rang-
ing from 5 to 7 compared to the standard implementation.
Acceleration factors for 13 and 16 are obtained for GPU as
reported in Figure 4.

Furthermore, the SIMD small gapped alignment achieves a
speed up ranging from 2.5 to 2.8 compared to the standard im-
plementation. Acceleration factors for 13 and 19 are obtained
for the GPU as reported in Figure 4.

The main disadvantage of SIMD small gapped alignment is
that element scores are sequentially accessed from memory.
Consequently, speed up is less than speed up of SIMD
ungapped alignment. Compared to SIMD ungapped alignment,
the GPU can achieve about 2 times faster. The powerful
performance of SIMD ungapped alignment is that it uses
effectively the subsequence profile cache and element scores
can be accessed in parallel. We believe that the GPU lost
performance because of several factors, including poor cache
memory and lack of high bandwidth access to cached data.

Based on the definition of two equivalent alignments, we
compared the sensibility between iBLASTP and BLASTP (iT-
BLASTN and TBLASTN). The same data sets as previously
are considered. The number of alignments found by the two
iBLASTP (iTBLASTN) implementations is the same, thus,

Fig. 5. Speed up of SIMD and GPU for small gapped alignment

TABLE V
COMPARISON OF SENSITIVITY BETWEEN IBLASTP AND BLASTP

nb. seq nb. of alignments value of P
(SWP) BLASTP iBLASTP 2% 5% 10%

5k 305,435 305,663 94.7% 94.9% 95.4%
10k 611,031 610,993 95.3% 95.3% 95.8%
20k 1,047,794 1,062,130 94.8% 95.0% 95.4%
40k 2,237,076 2,237,140 94.5% 95.2% 95.6%

TABLE VI
COMPARISON OF SENSITIVITY BETWEEN ITBLASTN AND TBLASTN

nb. seq nb. of alignments value of P
(SWP) TBLASTN iTBLASTN 2% 5% 10%

5k 290,016 290,406 95.6% 95.7% 95.9%
10k 572,608 573,880 96.0% 96.2% 96.4%
20k 1,172,466 1,173,378 96.4% 96.5% 96.6%
40k 2,208,330 2,211,935 96.4% 96.6% 96.7%

we have compared the sensibility between BLASTP and GPU
iBLASTP (TBLASTN and GPU iTBLASTN). This sensibility
was evaluated by considering three values of P: 2 %, 5 %,
and 10 %. TABLES V & VI summarize the results. For each
performance, the number of alignments found by BLASTP
and GPU iBLASTP (TBLASTN and GPU iTBLASTN) is
specified as a percentage of equivalent alignments.

The two programs BLASTP and GPU iBLASTP
(TBLASTN and GPU iTBLASTN) detect the same number of
alignments, and approximately 95 % (96 %) of the alignments
are equivalent. In fact, the difference could be explained
as followed: BLASTP and GPU iBLASTP (TBLASTN and
GPU iTBLASTN) do not use the same seed. Thus, there are
some alignments found by BLASTP (TBLASTN) and not by
GPU iBLASTP (GPU iTBLASTN) and inversely.

V. CONCLUSION

In this paper we have presented a parallel subset seed
algorithm for similarity search between protein sequences by
using SIMD instruction and GPU. To our knowledge, this is
the first attempt for this type of algorithm on these structures,
the other implementations for this search are based on the
dynamic programming algorithm.

Two programs have been developed and tested: iBLASTP
and iTBLASTN. They refer to BLASTP and TPLASTN of
the BLAST program family that are daily used by thousands

of biologists. For both GPU (SIMD) programs, we have
obtained acceleration factors of 5.5 and 10 (4 and 5.6) overall
execution time, and gains ranging from 13 to 19 (2.3 to 7) for
computation parallelized on GPU (SIMD).

One of the limitations of our current implementation is the
sequential treatment of stage 3-2, which limits significantly
the overall speed up. The solution may come from works
demonstrated in [5] [2]. This stage uses essentially the dy-
namic programming algorithm which is effective on the GPU
and through SIMD instructions. Therefor, we expect to obtain
a substantial gain by parallelizing this stage on GPU or using
SIMD instruction.

REFERENCES

[1] Benson, D., Karsch-Mizrachi, I., Lipman, D., Ostell, J., .Wheeler, D.,
GenBank, Nucleic Acids Research, Vol. 35, pp. 21-25, 2007.

[2] Michael Farrar, Striped Smith-Waterman speeds database search six times
over other SIMD implementation, Bioinformatics, Vol. 23, no. 2 2007,
pp. 156-161.

[3] Peterlongo, P., Noe, L., Lavenier, D., Georges, G., Jacques, J., Kucherov,
G., Giraud, M., Protein similarity search with subset seeds on a dedicated
reconfigurable hardware, Parallel Bio-Computing, Gdansk, Poland, 2007.

[4] NVIDIA CUDA Compute Unified Device Architecture, Programming
Guide, version 1.0, 23/6/2007.

[5] Liu, W., Schmidt, B., Voss, G., Schroder, A.& Wolfgang, M., Bio-
sequence database scanning on a GPU, HICOMBO, Rhodes Island,
Greece, 2006.

[6] Kucherov, G., Noe, L. & Roytberg, M. A unifying framework for seed
sensitivity and its application to subset seeds, JBCB 2006.

[7] Noe, L. & Kucherov YASS, G. Enhancing the sensitivity of DNA
similarity search, NAR 2005.

[8] Daniel G. Brown, Optimizing multiple seeds for protein homology search,
IEEE/ACM Transactions on Computational biology and bioinformatics,
Vol. 2, pp. 29-38, 2005.

[9] Li, M., Ma, B., Kisman, D. & Tromp, J., PatternHunter II: Highly
sensitive and fast homology search, Journal of Bioinformatics and Com-
putational Biology, Vol 2(3), pp. 417-439, 2004.

[10] Ma, B., Tromp, J. & Li, M., PatternHunter: faster and more sensitive
homology search, Bioinformatics, Vol 18(3), pp. 440-445, 2002.

[11] Zhang, Z., Schaer, A., Miller, W., Madden, T., Lipman, D., Koonin, E.,
and Altschul, S., Protein sequence similarity searches using patterns as
seeds, Nucleic Acids Research, Vol. 26, pp. 3986-9390, 1998.

[12] Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D., Gapped BLAST and PSI-BLAST : A new generation of
protein database search programs, Nucleic Acids Research, Vol. 25, No.
17, pp. 3389-3402, 1997.

[13] Altschul, S., Gish W., Miller W., Myers E. W. & Lipman D., Basic
Local Alignment Search Tool, J. Mol. Biology, 215, pp. 403-410, 1990.

[14] Wilbur, W. and Lipman, D., Rapid similarity searches of nucleic acid
and protein data banks. Proceedings of the National Academy of Sciences
USA, Vol. 80(3), pp. 726-730 1983.

[15] Smith, T.F., Waterman, M.S., Identification of common molecular sub-
sequences, J Mol Biol 1981, 147(1), pp. 195-197.

