
Parallelizing the ACGT OncoSimulator

Dominique LAVENIER and Julien JACQUES

Abstract— Nowadays, clinician can take advantage of in-
silico technologies to get faster estimations on clinical treat-
ments without performing time-consuming and expansive in-
vivo experimentations. Among these techniques, tumor growth
simulators can estimate tumor volume and the quantity of
cells (stem, proliferating...) in function of the time and from
a set of parameters. Within the framework of the ACGT
European project [2], we are working on the development of the
ACGT Oncosimulator which is based on the mathematical model
from ICCS. In this paper, we relate the current computation
techniques for increasing the ACGT Oncosimulator efficiency.

I. MOTIVATIONS

To have a powerful simulator, the underlying program
must be reliable, precise and fast. First, the reliability comes
from the consistence of the mathematical model compared
with in-vivo experiments. Second, the precision depends of
the sampling area, that is the spatial 3D unit dedicated to
the tumor discretization. Finally, speed is both related to the
quality of the code and to the performance of the hardware
resources. This paper deals with the last point.

Initially, the Oncosimulator has been developed for a
stand-alone PC equipped with a single core processor. This
approach obviously limits the program to sequential execu-
tions, even with today machines which are now integrating
double or quad core processors. Furthermore, one of the
goals of the ACGT project is to deploy a European computa-
tional grid able to support fast execution of the Oncosimula-
tor. It was thus desirable to adapt the Oncosimulator code to
benefit from the use of the ACGT grid power together with
the latest technology improvements.

Basically, the ACGT end-users may exploit the Oncosim-
ulator as follows:

• intensively: to find the better treatment, the clinician
has to try many combinations of parameters provided
by the Oncosimulator (size of the tumor, duration of
the treatment, quantity of drugs, interval between two
injections, etc.). In that case, many runs on different
parameters have to be executed, and the execution times
are directly correlated with the number of runs. It may
be not unusual to have a few hundred of parameter
combinations to test.

• with high precision: better the definition of the tumor,
better the estimation of the tumor behavior. In our case,
the definition of the tumor is directly linked to the

This work is supported by the European Community Framework Pro-
gramme for Research, Technological Development and Demonstration (FP6)

D. Lavenier, Symbiose Project Team, CNRS, Irisa, Campus de Beaulieu,
35000 Rennes, France lavenier@irisa.fr

J. Jacques, Symbiose Project Team, INRIA, Irisa, Campus de Beaulieu,
35000 Rennes, France jjacques@irisa.fr

3D discretization. From a computational point of view,
shrinking the discretization by 10 will increase the com-
putational complexity by 1000 since the modelization
operates in the 3D space.

• interactively: another way to focus to the right treat-
ment is to run successive simulations guided by a human
expert. Depending of the results of one simulation, the
clinician will slightly tune a few parameters according
to the tumor evolution. In that specific case, the response
time of the simulator is critical. Ideally, an execution
should not take more than ten to twenty seconds in order
to have an efficient interacting tool.

In the rest of the paper, we explore how the various
technologies available today can support these different kinds
of requirements [1].

II. TECHNOLOGIES

A. Grid computing

Grid computing consists in a set of machines (called
nodes) geographically spread and connected through Internet
(Fig. 1). A grid generally provides a high computing power
and a huge storage capacity. It is accessed through server
managers as, for instance, the Globus-SGE [3] environment.
These servers drive the node allocations according to the grid
workload.

Grids are well adapted to simultaneous executions of many
independent programs. The execution time of one program is
the same as if it is executed into a single machine. However,
since several programs are run in parallel, the global time Tg

needed to achieve the whole computation corresponds to:

Tg = Tp ×
⌈

Np

Nnodes

⌉
, (1)

where

 Tp : execution time of single program
Np : number of single programs
Nnodes : number of nodes

Deploying a code on a grid is easy since no modification
is required. Only the execution management is crucial
in order to distribute program instances on the available
resources.

The grid solution is well adapted to the first use of the
Oncosimulator: a lot of executions can be run in parallel with
different parameters, each run being assigned to a different
machine. Results are automatically collected back to the user.



Internet

site C

site A

site B

Fig. 1. Example of a Grid infrastructure with repartition of the computation
power and the storage capacity

B. Cluster

A cluster is a set of identical machines connected through
a high-speed network (Fig. 2). From an implementation point
of view, there are basically two possibilities to execute a
code on this support. The first one follows the grid idea:
many instances of the same program are dispatched on the
different nodes of the cluster. Difficulties and implementation
are thus identical.

The second one required to modify the code for paral-
lelizing the various parts of the program on several nodes.
To get a fast program, computations must be shared between
the processors in order to have a number of communications
and synchronizations as small as possible.

Network

Memory 
1

CPU 1

Memory 
n

CPU n

Memory 
0

CPU 0

Fig. 2. Single Program Multiple Data (SPMD) Architecture

That makes the parallelization task quite difficult: Even by
assuming well adapted distribution of data in the processor
memories, it always remains, in many cases, a part of the
program which cannot be parallelized and have to be done
sequentially. We also need to keep in mind that communica-
tions add costs between processors, and these costs do not
exist in the monoprocessor version. As a consequence, the
execution time can be stated as follows:

T// =
Tparallel tasks

Np
+ Tseq + Ccomm (2)

In the case where Tg < (Np×T//) then the parallelization
is inadequate.

As for the grid technology, clusters are well adapted for
running a large set of independent simulations with different
parameters. If a smart parallelization can be done at the
cluster level, this technology is thus able to satisfy all end-
user requirements.

C. Multicore processors

A multicore processor is a component having, on the same
die, several cores – or processing units – connected to the

same memory (Fig. 3). In this architecture, the use of threads
(or light processes) enables to explicitly express in the source
code the parallel execution of various parts of the program.

Core 1

Memory

Core 0

processor

thread 1
thread 2

Fig. 3. Two-core processor organization

Using this technology, we need to extract parallel blocs
that do not have data, time and spatial dependencies. In a
sequential program, the process is composed of only one
thread. Therefore, its execution on a multicore processor
will be done only on one core. In a multithreaded program,
the process is divided into many threads. As a result, the
execution can be shared among all the cores.

Even if this solution covers all the end-user requirements
for speeding up the simulation, it is much better suited for
accelerating single instance of the Oncosimulator. With the
next generation of processors, a larger number of cores will
certainly be available, providing significant increase of the
computing power. Thus, this is a necessity for the next ver-
sion of programs like Oncosimulator programs which require
high computational power to use this new opportunity.

III. APPLICATION TO THE ACGT ONCOSIMULATOR

As a first approach, we have made a cluster imple-
mentation on the INRIA Genouest bioinformatics platform
where many instances of the Oncosimulator can be run
simultaneously. Their submissions are done through a web
browser at http://acgt.genouest.org.

The next step has been to integrate this work through the
ACGT grid environment. The feedback from the ACGT end-
users is encouraging since this implementation meets the
need of simulating the tumor evolution according to a large
set of parameters.

However, the execution time of each instance takes several
minutes, leading to a non-interactive tool. Then, we first tried
to develop a MPI version, but the code we developed was
requiring too much synchronization points to get this version
really efficient.

We are currently developing a multithreaded version tar-
geted multicore processors with the objective to fall below
an execution time of ten seconds.

The last point, which needs to be highlighted, is that
all these technologies are not mutually exclusive. On the
contrary! Grids are made of clusters which now include mul-
ticore processor nodes. Thus, parallelization improvement
made on one of these technologies will have a direct impact
on the whole ACGT project.

REFERENCES

[1] M. Creel and W.L. Goffe, Multi-core CPUs, Clusters and Grid Com-
puting: a Tutorial, Society for Computational Economics, Computing
in Economics and Finance 2005, 438.

[2] ACGT Project website, http://eu-acgt.org
[3] The Globus Alliance website, http://www.globus.org


