
Efficient Parallelization of a Protein Sequence Comparison Algorithm on 
Manycore Architecture 

 
 

Xiaochun Ye1,2 Van Hoa Nguyen3, Dominique Lavenier3 Dongrui Fan1 
yexiaochun@ict.ac.cn {vhnguyen,lavenier}@irisa.fr fandr@ict.ac.cn 

1. Key Lab of Computer System and Architecture, Institute of Computing Technology, 
 Chinese Academy of Sciences, Beijing, China 

2. Graduate University of Chinese Academy of Sciences, Beijing, China 
3. IRISA / INRIA-CNRS, Rennes, France 

 
 

Abstract 
 

This paper introduces the Godson-T manycore 
architecture and demonstrates the efficiency of its 
synchronization mechanism through a computation 
intensive bioinformatics application: the comparison 
of protein banks. The parallel part of the protein 
sequence comparison algorithm can nearly get a 
linear speed-up thanks to a fine tuning of the 
synchronization mechanism provided by the Godson-T 
chip. 
 
1. Introduction 
 

In bioinformatics, one of the basic tasks is to 
compare genomic sequences. There are two main 
families of applications. The first one is devoted to the 
search of large databases. The second family concerns 
large bioinformatics treatments made on the newly 
data available every day. In that case, sequence 
comparison is often one of the first operations which 
are performed on raw data before more complex 
processing. 

Biotechnology improvement in the sequencing area 
has led to a huge increase in the size of genomic 
databases such as GenBank and UniProt protein 
database.  Being able to process these data as fast as 
possible, represent one of the current challenges in 
bioinformatics. More precisely, comparing sequence 
means extracting similar zone between sequences. The 
difficulty is that we do not know both the location and 
the size of these similar zones. Many algorithms have 
been proposed to solve this problem, including Smith-
Waterman algorithm [1] and some other powerful 
heuristics ones such as Blast[2] and Fasta[3].  

The algorithm we used in this paper belongs to the 
seed heuristics algorithm family. It has been developed 

at IRISA and specifically designed for various parallel 
platforms including multicore/manycore, FPGA and 
GP-GPU (graphics boards). It is also oriented toward 
intensive protein sequence comparison, and not for 
searching genomic banks. Then, its primarily goal is to 
compare two banks of protein sequences and to 
generate alignments where similar zones have been 
detected. The two protein banks are first loaded and 
indexed into the computer’s main memory for 
optimizing the search process. However, for large 
banks, this process can take hours of computation. It is 
thus extremely interesting to evaluate the behavior of 
this algorithm onto parallel hardware. 

During the last few years, there have been different 
parallel methods of sequence comparison algorithms. 
However, few implementations use manycore 
architecture, while manycore has been more and more 
popular at the same time. In this paper, we focus on a 
novel manycore architecture named Godson-T [4,5], 
and show that the parallel part of the algorithm 
perfectly suits with the thread programming model of 
the Godson-T processor.  
 
2. The Godson-T Architecture 
 

As depicted in figure 1, a Godson-T chip has 24 
computing tile nodes, 1 synchronization node, 4 IO 
controllers, and 4 memory controllers. The L2 cache is 
grouped into 4 banks. The 25 nodes are arranged in a 
2D-mesh network, which provides both high 
bandwidth and fine scalability.  

Figure 2 shows the architecture of one computing 
node: it consists of 4 processing cores, two L1 D-
caches and one L1 I-cache. They are connected by a 
crossbar which provides a low-latency and high-
bandwidth communication within each node. Besides 
the L1 cache, each node also has a SRAM bank which 



can be configured as a scratchpad memory (SPM) with 
very low access latency. SPM can be totally controlled 
by programmer. It can be used to speedup the access of 
frequently used data or to exploit the locality of some 
irregular computations. 

 

 

Figure 1.  
Godson-T chip 

Figure 2. 
 Computing node 

 
In addition, Godson-T proposes a rich set of 

hardware to support synchronization. The way to use 
Acquire/Release (or Lock/Unlock) operations is 
similar to those based on shared memory access. With 
this mechanism, all the Acquire/Release operations can 
be recorded in the lock manager inside the chip. And 
this is much faster than traditional Acquire/Release 
operations which need additional memory accesses. 

Godson-T uses a scope consistency (ScC) [6] 
memory model. Using the Godson-T hardware lock 
manager, we implement a lock-based cache coherence 
which is much simpler than snoopy-based or directory-
based one. The L1 cache is write-through and the L2 
cache is write-back. If it is the first time to read a 
shared variable after Acquire, Godson-T will always 
fetch it from L2 cache and then update the old value in 
L1 cache if there is an old copy there. This ensures the 
cache coherence among all the processing cores.  
 
3. Protein Sequence Comparison 
Algorithm 
 

This algorithm is mainly composed of 5 stages as 
shown in figure 3. Stage 1 makes indices for the two 
banks: each bank is stored into the computer’s main 
memory using a specific data structure allowing fast 
retrieval of short words of length 4, called seeds. Stage 
2 enumerates all the 204 seeds (there are 20 different 
amino acids in a protein) and for each of them 
constructs 2 blocks of substrings: block bk1 contains 
substrings extracted from index1 and block bk2 
contains substrings extracted from index2. A substring 
corresponds to neighboring amino acids around the 
seed, typically 40 amino acids. Stage 3 considers all 
possible pairs of substrings from bk1 and bk2 and 
starts the computation of an alignment by extending 

possible matches from the left and right hand side. If 
enough matches are found, then the extension is stored 
into structure T1. Stage 4 takes all elements of T1 and 
computes an alignment using dynamic programming 
techniques.  Alignments exceeding a given threshold 
are stored in T2. Finally, stage 5 sorts the alignments 
before displaying them. The sort function aims at 
eliminating identical alignments found by stage 4. 

 
index1 = index (bank1)                                     -stage 1 
index2 = index (bank2)  
T1 = T2=Ø 
for all  204  possible seeds                                -stage 2 
  construct neighboring block bk1 from index1 
  construct neighboring block bk2 from index2 
  for each subsequence of bk1                           -stage 3 
    for each subsequence of bk2 
      compute ungapped alignment 
      if(score > S1)  add result to T1 
for each element in T1                                      -stage 4 
  compute gapped alignment 
  if(score > S2)  add result to T2    
sort T2                                                               -stage 5 
for each element in T2 

  display alignment 
Figure 3.  Sequential algorithm 

 
Normally, stage 3 and stage 4 dominate in terms of 

percentage of the execution time, especially when 
large banks are involved. When the number of 
sequences is more than 100 thousands, stage 3 and 4 
get 64% and 33% respectively. Stage 5 gets 3%. The 
consuming time of stage 1 and 2 is almost negligible.  
 
4. Parallelization and Performances 
 

Clearly, an efficient parallelization has to target 
stage 3 and stage 4. Actually, for each seed, stage 2 to 
stage 4 can be processed independently. So we make 
each processor fetch a different seed and perform the 
corresponding stages (stage 2, 3, and 4). 

Besides the serial components of the algorithm, 
there are 3 other factors which will affect the speed-up: 
(1) Synchronization overhead. This mainly comes from 
the Acquire/Release pairs used when the thread fetches 
a new word from the seed dictionary. We find that 
more than 90% of the entries in the seed dictionary are 
empty because there is no hit in both of the two banks. 
We’d better get rid of them first in order to avoid the 
unnecessary Acquire/Release pairs and decrease the 
lock competition among threads. (2) Memory 
contention. This algorithm is very cache-friendly 

GodsonT 
Processor

Sync.
Node

Tile
Node

R

Tile
Node

Tile
Node

Tile
Node

Tile
Node

Tile
Node

R

R R

Tile
Node

Tile
Node

Tile
Node

Tile
Node

R

R

R

R

R

R

Tile
Node

R

Tile
Node

Tile
Node

Tile
Node

Tile
Node

Tile
Node

R

R R

Tile
Node

Tile
Node

Tile
Node

Tile
Node

R

R

R

R

R

R

Tile
Node

Tile
Node

Tile
Node

Tile
Node

R R R R R

Memory 
Controller 
L2 cache

iobus0

membus1

membus0 membus2

I/O
Controller

Memory 
Controller 
L2 cache

Memory 
Controller 
L2 cache

Memory 
Controller 
L2 cache

I/O
Controller

I/O
Controller

I/O
Controller

membus3

iobus1

iobus2 iobus3

TU TU

FU

SPM

TU TU

FU

SPM

Processing Core

Crossbar

SU SU

TU TU

FU

SPM

SU

TU TU

FU

SPM

SU

L1 I$ L1 D$ L1 D$

Router

Tile Node



thanks to the construction of neighboring blocks in 
stage 2. Different numbers of threads almost cause the 
same average percentage of time waiting for data 
access over the parallel part. So it is not a problem for 
our algorithm. (3) load balancing. This is very critical 
for the performance of parallelization, because the total 
parallel execution time is dependent on the longest 
running thread. We find out that there is a good chance 
that matches of some special words will be bursty. 
There are always some words which have much more 
computation than others, and these words may lead to 
uneven computation in both stages 3 and stage 4.  

The parallel algorithm is depicted in figure 4. A 
main thread performs sequentially stages 1 and 5 while 
stages 2, 3 and 4 are parallelized on P slave threads. 

The main thread starts by indexing the two banks. 
Then, it initializes 3 shared variables which will be 
used by the slave threads. P slave threads are then 
launched for executing the stages 2, 3 and 4.  After 
that, the main thread waits for all slave threads to 
finish. Each slave thread returns a list of alignments 
which are merged into the T1 structure. The algorithm 
finishes similarly to the sequential algorithm: results 
are sorted before displayed. 

Before performing stage 2, a slave thread has to get 
a unique seed number through the Acquire/Release 
pair. To minimize the Acquire/Release overhead, we 
discard all the redundant seeds in the main thread. 

After getting a seed number, a slave thread 
constructs 2 neighboring blocks of substrings and 
performs ungapped extension. Results are stored in the 
internal structure t0_p. The next step is to move these 
results to the shared structure T0. Again, an 
Acquire/Release lock is used to reserve K places in T0, 
if K is the number of successful extensions to be 
stored. The idx1 variable is updated consequently.  

In stage 4, to solve the load balancing problem, we 
re-divide all the elements in T0 among threads and 
make each thread get K elements from T0 
dynamically. Before that, we add a barrier for the 
synchronization.  

To be efficient, and to avoid long waiting time for 
the threads stuck in the barrier, we need to pay 
attention to the computation load of the loops in stage 
3. As we mentioned before, seeds are not equivalent: 
some of them are largely overrepresented. If one of the 
last seeds belongs to this category, then the thread in 
charge of it will finish a long time after the others. To 
suppress this potential drawback, seeds are first sorted 
by complexity: seeds involving large computation time 
are computed first. In such a way, the last seeds require 
a very small amount of computation and the P threads 
end nearly at the same time. The overhead induces by 
the barrier synchronization is thus very small. Note 

that we have removed all the seeds with no hit before 
performing the sort operation. Thus the sort time is 
very small.  

 
Main thread 
  index1 = index (bank1)   -stage 1 
  index2 = index (bank2) 
  idx0=idx1=idx2=0;  T0 = T1 = Ø 
  discard the redundant seeds and sort the others 
  create P slave threads 
  join salve threads 
  merge alignment results from t1_p into T1 
  sort T1     -stage 5 
  for each element in T1 
    display alignment result 
    
Slave thread p 
  while (seed < nb_seed) 
    Acquire(lock0)     
    iT0 = idx0; idx0++ 
    Release(lock0) 
    get seed according to iT0 
    construct neighboring block bk1 from index1 -stage 2 
    construct neighboring block bk2 from index2 
    t0_p = Ø;    t1_p = Ø 
    for each subsequence of bk1  -stage 3 
      for each subsequence of bk2 
        compute ungapped alignment 
        if(score>S1)   add result to t0_p 
    Acquire(lock1) 
    iT0 = idx1; idx1 += size(t0_p) 
    Release(lock1) 
    store t0_p into T0 according to iT0 
  Barrier 
  while(idx2 < size(T0))   -stage 4 
    Acquire(lock2) 
    iT0 = idx2; idx2+=K 
    Release(lock2) 
    Acquire(lock[p]) 
    get K ungapped results from T0 according to iT0 
    Release(lock[p]) 
    for each ungapped result 
      compute gapped alignment 
      if (score > S2)   add alignment result to t1_p 

Figure 4.  Parallel algorithm 
 
The second part of the computation deals with stage 

4 for computing the final alignments. Each slave thread 
gets K extensions stored in T0 and processes 
independently K alignments. Getting the extensions 
must be controlled by an Acquire/Release pair.  



0

8

16

24

32

40

48

56

64

0 8 16 24 32 40 48 56 64

# t hr eads

speed- up

 
8              16              24             32              40             48              56             64

5

10

15

20

speed-up

# threads

600 proteins

100 000 proteins

 

Figure 5． Speed-up of parallel part Figure 6.  Overall speed-up 

 
However, the same lock doesn’t need to be used by 

all threads. We just want to make sure that the correct 
value can be extracted from the shared structure. Thus, 
different locks are used for different threads (lock[p] 
for thread p), and no thread has to wait.  

Performances have been estimated from a cycle-
based event-driven simulator. Two banks of 300 
protein sequences have been built. They are extracted 
from the SwissProt database (release 54.6) which has 
an average length of 360 amino acids. 

The algorithm is simulated with an increasing 
number of threads, starting from 1 to 64. Each thread 
captures one computing node. We first measure the 
lock waiting time, which is the time spent in the 
various Acquire/Release pairs. The following table 
indicates the rate over the total parallel time: 

# ths 2 4 8 16 32 64 

‰ 0.029 0.030 0.030 0.038 0.058 0.38 
It can be seen that this time represents a very small 

fraction of the total parallel execution time. Similarly, 
we evaluate the average waiting time due to the 
synchronization barrier. For 64 threads, we get 0.63%; 
it is even smaller for a smaller number of threads. This 
small synchronization overhead has an immediate 
impact on the speed-up we can get from this 
parallelization.  Figure 5 draws the speed-up of the 
parallel part as a function of the number of threads. 

We nearly get a linear speed-up. This comes from 
the high efficiency of the Godson-T synchronization 
scheme and the fine scalability of the protein sequence 
comparison algorithm. If we now consider the global 
speed-up, including both the sequential part (stages 1 
and 5) and the parallel part (stages 2, 3, and 4), we 
obtain the speed-up shown in figure 6. 

The red curve (600 proteins) is the results of 
simulation of comparison between the two banks of 
300 protein sequences. The blue one (100 000 
proteins) is an extrapolation according to profiling. For 
small data set, stage 1 represents a non negligible 
percentage of the execution time (about 5%). For large 
data set, stage 1 becomes very small compared to the 
other stages, increasing the overall speed-up 
consequently. To get more speed-up, stage 5 need to 

be revisited in order to process data in a way suitable 
for parallelism 
 
5. Conclusion and Perspectives 
 

Our results demonstrate that Godson-T is very 
efficient in the lock synchronization scheme. The total 
lock overhead is very small and can be almost 
negligible when using 64 threads. Our results also 
show that this algorithm has a fine scalability, and is 
very suitable to be parallelized. With a fine tuning for 
the synchronization and load balancing, we achieve a 
nearly linear speed-up when using 1 to 64 threads. 

We only implement a coarse-grain parallelism but it 
is also possible to use SIMD instructions to accelerate 
the most computation-intensive part: ungapped 
alignment. With SIMD support, each core can perform 
several ungapped alignments by using one instruction.  

Note that in addition to protein sequences 
comparison, our implementation is also suitable for 
other forms of sequences comparison. 

 
6. References 
 

[1] T.F. Smith, and M.S. Waterman, “Identification  of 
common molecular subsequences”, J Mol Biol, 
147(1), pp. 195-197. 1981 

[2] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. 
Zhang, W. Miller, D. Lipman, “Gapped BLAST and  
PSI-BLAST : A new generation of  protein  database 
search  programs”, Nucleic  Acids Research, Vol. 25, 
No. 17, pp. 3389-3402, 1997. 

[3] W.R. Pearson, and D.J. Lipman, “Improved Tools for 
Biological Sequence Comparison”, Proc. Natl. Acad. 
Sci., 85: 2444-2448. 1988 

[4] G. Tan, D. Fan, J. Zhang, A. Russo, G. Gao, 
“Experience on Optimizing Irregular Computation for 
Memory Hierarchy in Manycore Architecture”, 
PPoPP08, Feb. 2008 

[5] H. Huang, N. Yuan, W. Lin .et al. “Architecture 
Supported Synchronization-Based Cache Coherence 
Protocol for Many-Core Processors”, CMP-MSI’08, 
ISCA Workshop, 2008 

[6] L. Iftode, J. Singh, and K. Li, “Scope Consistency: A 
Bridge between Release Consistency and Entry 
Consistency”, SPAA 96, 1996 



 


