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Abstract. As genomes, transcriptomes and meta-genomes are being se-
quenced at a faster pace than ever, there is a pressing need for e�cient
genome assembly methods. Two practical issues in assembly are heavy
memory usage and long execution time during the read indexing phase.
In this article, a parallel and memory-e�cient method is proposed for
reads indexing prior to assembly. Speci�cally, a hash-based structure
that stores a reduced amount of read information is designed. Erroneous
entries are �ltered on the �y during index construction. A prototype
implementation has been designed and applied to actual Illumina short
reads. Benchmark evaluation shows that this indexing method requires
signi�cantly less memory than those from popular assemblers.

Introduction

Until the emergence of next-generation sequencing (NGS) technologies, soft-
ware for assembling genomes could process up to millions of long (∼ 104 bp)
reads. Now, a typical genome assembly instance for a vertebrate genome con-
sists of billions of short (100 bp) reads. Despite this technological shift, computa-
tional models for assembly are essentially based on constructing and simplifying
a genome graph. However, graph-based models have inherent limitations that
make them unpractical for assembly of NGS data. They require the construc-
tion of either a large string graph containing all the reads, or a de Bruijn graph
containing all the k-length substrings (k-mers) of the reads. For human-sized
genomes, the de Bruijn graph typically requires hundreds of gigabases of mem-
ory [9]. Nevertheless, NGS assembly tools rely on optimized implementations of
these graph models. For instance, leading assembly programs have implemented
e�cient heuristics using a de Bruijn graph [18,9]. For more details concerning
these implementations, refer to a recent survey [10]. In a near future, larger
eukaryotic genomes and meta-genomes will be sequenced at a faster pace than
computational resources growth. Hence, new assembly models need to be devel-
oped to sustain the increasing rate of NGS technologies.

Several theoretical advances have been recently proposed to reduce the mem-
ory usage of graph-based assemblers. Simpson et al. implemented compression
techniques (FM-index [6]) during construction of the string graph [15] at the ex-
pense of running time. Conway et al. used succinct bitmap structures [11,13] to
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construct an immutable de Bruijn graph [5]. Distributed de Bruijn graph con-
struction using a message passing interface have been implemented in several
assemblers [7,16,8].

Greedy assemblers use a di�erent assembly strategy. Instead of constructing
a genome graph, they repeatedly perform an extension procedure until branch-
ing is detected. Previous implementations of greedy assemblers used a pre�x tree
to store reads [17], which consumes signi�cantly more memory than a de Bruijn
graph. Recent optimized implementations use custom k-mer indexing structures
for memory e�ciency [1,2,3]. In particular, these implementation have been ap-
plied to complex mammalian genomes, demonstrating that greedy assemblers
are not limited to genomes with low repeat content. Unlike de Bruijn graph as-
semblers, data structures used in greedy assemblers typically contain references
to read sequences. Hence, e�cient read indexing is necessary to keep memory
usage low.

In the next section, we propose a parallel reads indexing procedure designed
speci�cally for assembly. Two novel �ltering methods are introduced to reduce
memory usage: a procedure to remove erroneous k-mers on the �y, and a proce-
dure to avoid referencing redundant reads. Finally, a prototype implementation
is applied to real Illumina data to validate the method.

Methods

Distributed and multi-threaded indexing

A multi-threaded, multi-node procedure for reads indexing is proposed. A hash
table is constructed, where the entries are k-mers, and the values are references
to reads. Taking advantage of shared memory between threads, reads sequences
are stored separately in memory, without redundancy within a node. Index con-
struction is distributed among N nodes, and each node performs independent
computations in parallel. Speci�cally, each node n is running Tn threads, each
thread tn constructs a separate sub-index I(n, tn). A binning method adapted
from [16] assigns each k-mer to a unique sub-index. Let h be a k-mer hash value
with perfect hashing [16]. The corresponding k-mer belongs to the sub-index
I(n, tn) if: {

h mod N = n

h mod Tn = tn

which ensures that each sub-index contains distinct k-mers. Each thread
reads the entirety of the input data to construct its sub-index. When all the sub-
indexes are constructed, an inexpensive merging phase yields the complete index.
Hence, the indexing procedure always constructs the same complete index on
di�erent architectures. In the following, two algorithmic ingredients are described
for parallel sub-index construction: k-mers �ltering and reads indexing.
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On-line parallel k-mers �ltering

Memory e�ciency is crucial when assembling NGS data. In many approaches,
including the one proposed here, memory consumption is proportional to the
number of indexed k-mers. It is therefore important to �lter out erroneous k-
mers as early in the indexing process as possible. Erroneous k-mers are pro-
duced whenever the sequencing process makes a mistake during base calling.
The abundance distribution Kn

t (m) is de�ned as the number of k-mers seen ex-
actly m times at indexing time t by node n. A key fact is that the hash function
used above evenly distributes k-mers among sub-indexes. Hence, each Kn

t (m)
is identically distributed as the entire distribution

∑
n K

n
t (m). This observation

enables independent, parallel �ltering for each sub-index. The superscript n is
then omitted in the following.

A typical distribution of Kt(m) at �nal time t is multimodal. A large number
of k-mers occur only a few times: these are mostly sequencing errors. Assuming
uniform sequencing coverage, the distribution of correct k-mers is a Gaussian
mixture. The most abundant component is centered at the expected coverage
of the target genome. Less abundant components are centered at multiples of
the coverage, due to repeats in the genome. The proposed method consists in
(i) detecting components corresponding to erroneous and correct k-mers as soon
as they separate su�ciently from each other and (ii) �nding an appropriate
erroneous threshold (cut-o� value). Every k-mer that has appeared fewer times
than the erroneous threshold so far is then considered as an error and removed.
This procedure could be extended to correct errors in reads, but it is outside the
scope of the current indexing scheme.

Error detection The following two inequalities must be satis�ed to trigger the
�ltering procedure. First, erroneous k-mers are identi�ed by their abundance.
Theorem 3 from [12] establishes that, under reasonable sequencing assumptions,
an error is signi�cantly less likely to appear m + 1 times than m times. Thus,
the abundance of erroneous k-mers peaks at m = 1 and has a strictly decreasing
slope. The low end mlow(t) is computed as the largest m that satis�es Kt(m−
1) > Kt(m) for m ≥ 1. Then, the peak abundance mhigh(t) of correct k-mers is
computed as the parameter at which the maximum value of Kt(m) is attained
for m > mlow(t). Erroneous and correct k-mers are considered to be separated
when:

mhigh(t)−mlow(t) > r

where r is a user-de�ned resolution parameter. Second, to avoid the compu-
tational cost of �ltering too soon or too often, a constraint is imposed on the
amount of erroneous k-mers. Let Smin be a minimum amount (user-de�ned) of
erroneous k-mers before the �ltering process can be performed:

mlow∑
m=1

Kt(m) > Smin
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Calculating the cut-o� value During early �ltering passes, a small fraction of
correct k-mers still contributes to the erroneous component. Hence, removing the
entire component at each �ltering pass is not a sensible choice. An incrementing
value, de�ned as the cut-o� value, is introduced to overcome this problem. All
k-mers of abundance lower than the cut-o� value are removed by the �ltering
procedure, others are kept. Formally, a threshold msolid is de�ned as the number
of occurrences below which a k-mer is considered a potential error. All k-mers
over this threshold at the end of the indexing phase are solid k-mers. Let tReads
and nReads(t) be the total number of reads in the input �le and the number
of reads processed at time t respectively. The cut-o� value F (t) is calculated
according to the following formula:

F (t) = bmsolid · nReads(t)

tReads
c

Reads indexing structure

Each sub-index is populated independently with a �ltered set of references to
reads, given a �ltering function designed for de novo assembly. The extension of
a k-mer in a read is de�ned as the su�x immediately following the k-mer (e.g.
for a read r = uwv where w is a k-mer and u, v are arbitrary strings, v is the
extension of w in r). We introduce a notion of redundancy between extensions.
Let (v1, v2) be two extensions of the same k-mer, without loss of generality
assume that the length |v1| is shorter than |v2|. Two extensions v1,v2 are said to
be t-redundant if the Hamming distance between their pre�xes of length |v1| is
lower than t. The representative read spectrum with similarity threshold t, noted
RRS(k, t), is de�ned for a set of input reads as follows:

(i) associate a set Sw to each solid k-mer w occurring in the reads
(ii) Sw discards all but one of the reads associated to t-redundant extensions. A

read with the longest extension is kept, ties are broken arbitrarily.

Figure 1 shows an example of a representative reads spectrum. The reads se-
quences referenced by the RRS are stored separately. Practically, both a read
and its reverse-complement are indexed. References to paired-end reads are ex-
plicitly made to the left or the right mate of the read.

In essence, this structure records a representative set of reads for each solid
k-mer. Note that this indexing does not correct errors in read, but merely ig-
nores errors in reads su�xes. Erroneous pre�xes yield un-solid k-mers, hence
these reads are not indexed in the structure. This property is well suited with
Illumina reads as sequencing errors are known to mostly occur at read su�xes.
Provided the sequencing coverage is high, errors in su�xes can be corrected at a
later stage during a consensus phase. This justi�es the arbitrary removal of other
reads having equally long t-redundant extensions. To maximize the e�ectiveness
of the structure for assembly, sequencing reads should contain solid k-mers cor-
responding to every position in the genome. Hence, either a high sequencing
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CAT

kmers index

{1, 7}

ATG

reads: { 1:CATGA, 2:ATGTG, 3:CACTA, 4:TCATT,
              5:CATTA, 6:ATGCC, 7:CATCT, 8:ATGCA }

indices of reads containing
non-redudant extensions 
from kmer entry

{2, 6}

Fig. 1. The representative reads spectrum for a set of 8 reads with parameters k =
3, t = 1. Entries are solid k-mers from reads. Each k-mer is associated with a list of
reads which extend the k-mer to the right. The extensions are �ltered for t-redundancy.
For instance, reads 4 and 5 are not indexed to the CAT entry because extensions T and
TA are 1-redundant with respect to extension GA from read 1. Reverse complements
of reads are also indexed, but are omitted in this �gure.

coverage or a low error-rate is required. Both criteria are typically met with
recent Illumina sequencers.

For assembly, it can be veri�ed that basic traversal of a string graph can be
performed with this structure. The RRS acts as an incomplete inverted index
for the reads. Speci�cally, in the string graph, out-neighbors of a read (i.e.,
other reads that overlap that read to the right) are retrieved from the RRS by
querying each of the read k-mers. In-neighbors (left overlap) are equivalent to
out-neighbors of the read reverse complement.

Results

We developed an implementation of the on-line k-mers �ltering and the reads
indexing algorithms, as part of the Monument assembler [4]. The implementation
is tested on two actual sequence datasets from R. sphaeroides (SRA reference
SRR034530) and N.crassa (all libraries from [14]) sequenced using the Illumina
technology. The R. sphaeroides dataset (dataset 1) contains 46 million reads of
length 36 bp. The N.crassa dataset (dataset 2) contains 320 million reads of
average length 32 bp. Benchmarks were run on a 64-bit 8-cores machine with
66 GB of memory. In this implementation, read sequences are stored in memory
on each node as an array of 2-bit encoded sequences. In the case of multi-nodes
computation, n

4 bytes are redundantly stored per node, where n is the number
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Fig. 2. Memory usage during the on-line k-mers �ltering procedure, compared with
un-�ltered indexing. Dataset 1 is processed with parameters msolid = 10, r = 10,
Smin = 107 and using 1 thread. The �rst �ltering pass is triggered at 11.6% of the
dataset. Sporadic jumps in memory consumption correspond to resize operations of
the hash table.

of nucleotides in the reads. For the R. sphaeroides reads set, this amounts to
0.462 GB.

We �rst examined the e�ect of on-line k-mers �ltering on the �rst dataset.
To this end, only the abundance count is retained for each k-mer. A comparison
against a k-mer counting without �ltering is made in Figure 2. It is important to
note that, when entries corresponding to erroneous k-mers are removed from the
hash table, the allocated memory is not freed but is instead made available for
new entries. There are 144 M k-mers in the dataset, only 4.5 M (3.1%) of which
are correct. On-line �ltering enabled to keep the number of k-mers in the hash
table under 23M at any time. We veri�ed that 4,544,973 solid kmers are retrieved
without �ltering, compared to 4,464,256 (98.2%) solid kmers with �ltering (solid
thresholdmsolid = 10). The di�erence of 80,717 k-mers corresponds to premature
�ltering of k-mers that would be solid if given enough time before �ltering. Then,
we computed the full indexing time for an increasing number of cores (Figure
3). Some constant over-head occurs as reads pre-loading is not parallelized.

We compared memory usage of indexing procedures from other popular ultra-
short reads assemblers with our implementation. The Velvet assembler (version
1.1.03) and the SOAPdenovo assembler (version 1.05) are based on de Bruijn
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Fig. 3. Execution time of indexing for our implementation on datasets 1 and 2 using
1 node and 1 to 8 threads.

graphs and use graph simpli�cation heuristics. SOAPdenovo is speci�cally op-
timized for memory e�ciency, it discards reads and pairing information in the
initial graph structure. Our implementation uses spectrum parameter t = 4,
Smin = 106, msolid = 10 and r = 0 for both datasets. All the assemblers are
executed with k-mer size of 21. Only the indexing phase of assemblers were run
(pregraph for SOAPdenovo, velveth for Velvet). Results are summarized in
Table 1. The k-mers �ltering step is essential in our method: complete indexing
of Dataset 1 without k-mers �ltering required 20.1 GB of memory. In terms of
wall-clock time, these methods are comparable: for the largest dataset, SOAPde-
novo and Monument completed indexing in respectively 41 and 64 minutes using
6 threads. In conclusion, our indexing scheme signi�cantly reduces the memory
bottleneck for assembly, with minor impact on parallel indexing time.

Dataset Monument Velvet SOAPdenovo

Peak memory (GB)
1 2.7 7.7 3.9

2 15.3 - 31.4

Table 1. Practical memory usage of indexing 46 M reads from R. sphaeroides (dataset
1) and 320 M reads from N.crassa (dataset 2) using Velvet, SOAPdenovo and Monu-
ment. Velvet exceeded the memory limit (66 GB) on the second dataset.
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We veri�ed that this index permits assembly with comparable quality than
existing methods. To this end, we implemented an assembly method which con-
structs contigs based on extensions recorded in the representative reads spec-
trum. We computed the following N50 values (contig length such that longer
contigs produce 50% of the assembly) with respect to the same assembly size
(that of Velvet, 4.30 Mbp). Our assembly of R. sphaeroides yields 4.28 Mbp of
contigs with a N50 value of 1.49 kbp. In comparison, we executed Velvet with
similar k-mer size, which yields 4.30 Mbp of contigs with a N50 value of 1.41
kbp. In terms of running times, Velvet assembly phase (velvetg) executed in 2
min 46 sec CPU time, whereas our parallel string graph traversal required 1 min
42 sec CPU time per thread using 6 threads.

Discussion

A novel method is proposed for multi-nodes, multi-threaded reads indexing. It
introduces two �ltering techniques for memory e�ciency: on-line removal of er-
roneous k-mers and on-line indexing of only representative reads. To our knowl-
edge, this is the �rst read index that provides in-memory O(1) access to overlaps
between reads, full read sequences and also pairing information. This novel in-
dexing method allows to design assembly algorithms which overcome several of
the performance issues inherent to graph-based assembly. For instance, memory
usage is lowered as no graph structure is constructed. Independent indexing of
sub-indexes allows for embarrassingly parallel and distributed computation. As
implemented in our prototype, the read index is constructed using signi�cantly
less memory than recent, optimized implementations of de Bruijn graphs with
comparable indexing time.

These results can also be used to reduce memory usage of single-threaded
greedy assemblers. Usually, the same data structure is used to construct the
�nal reads index and then access it during assembly. However, greedy assemblers
typically uses an immutable index. Hence, taking advantage of immutability,
one can focus on designing a more compact representation of the reads index
once it is fully constructed. For memory e�ciency, sub-indexes can be simply
constructed one at a time. In our index, the hash table can be replaced by a
succinct rank/select data structure [11] to represent entries, and a simple array
containing �xed-length lists of representative reads. The memory overhead of
such structure becomes negligible as no pointer is used. A preliminary experiment
shows that the entire index of dataset 2 is represented in only 4.2 GB of memory
with this method.
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