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Abstract

This paper presents a systolic filter for speeding up the scan of DNA databases. The filter
acts as a co-processor which performs the more intensive computations occurring during
the process. Validation has been done on a based FPGA prototype board tightly connected
to a workstation and has shown that the filter may boost the performances of the machine
by a factor ranging from 50 to 400 over current workstations.

1 Introduction

The scan of DNA databases is a fundamental task in molecular biology. This operation
consists of identifying those sequences in the DNA database which contain at least one
segment suffliciently similar to some segments of a query sequence.

The computational complexity of this operation is proportional to the product of the
length of the query sequence and the total number of nucleic acids in the database. In
general, segment pairs (one from a database sequence and one from the query sequence)
may be considered similar if many nucleotides within the segment match identically.

Presently, softwares such as BLASTN [1] or FASTA [9] are extensively used to perform the
scan of the DNA database. They have been designed to run on standard computers (i.e.
Von Neuman machine) and include software techniques for speeding up the process. These
techniques are based on heuristics which can be tuned by setting external parameters.

The search sensitivity depends mainly of these parameters. In general, a low sensibility
implies a short computation time (a few minutes), while a high sensibility involves very
long computation time (a few hours).

One could think that, in the future, the increasing power of the micro-processors would
decrease the computation time. Unfortunately, the banks of DNA sequences grow in syze by
approximatively 50 % per year and there is no reason to expect this progression to change
in the next few years.

Actually, the DNA databases and the micro-processor performances grow approximately
at the same speed. As an example, the graph of the figure 1 shows two growing curves: the
dark line represents the size of GenBank [2] (in million of nucleotides) since 1986; the dash
line measures performance (in M1Ps) of the fastest available 80x86 processor at introduction
[5]. The two curves follow nearly the same exponential progression. Thus, biologists will
continue to have the dilemma of getting incomplete results in a short time or waiting a long
time for satisfying solutions.

This paper propose a hardware approach for solving this dilemma: a systolic filter which,
when plugged into the extension slot of a PC or a workstation, boosts considerably the
performances of the machine.

The next section presents the filter algorithm. Section 3 details the architecture of the
filter and its implementation on a FPGA based support while section 4 gives performance
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Figure 1. size of GenBank versus 80x86 power

figures. Section 5 describes the design methodology we follow before concluding on some
perspectives of this work.

2 Algorithm

The problem is to locate similar segments between two DNA sequences. Given two seg-
ments S¢g0 and Sg¢1, having both n characters, it is generally accepted that the similarity
S is measured as follows:

=n

$ =Y SUB[S¢0(i)][Sg1(i)]

i=1

where Sg¢(7) represents the i" character of the segment Sg and sub a substitution table
which indicates the cost of replacing one character by another. In the case of DNA sequences,
the alphabet consists of 4 letters, A,C, G and T and the substitution table may not be used.
Only costs for matches and mismatches are considered. The similarity is then calculated
as follows:
7
S = if (Sg0(i)= Sg1(i)) then M else N
1
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where M is the cost of a match and N the cost a mismatch. M is a positive number while
N is a negative number. Only the segments which have a cost bigger than a threshold value
T are considered as similar.
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Figure 2. detection of similar segments

The detection of such similar segments between two sequences S0 and S1 implies to
compute the similarity of all possible subsequences of S0 with all possible subsequences of
S1. This is achieved by calculating a 0 X nl matrix Tz such as:

Tali][j] = AJAX{ gx[t —1][j — 1] 4 (if (Sg0(¢) = Sg1(j)) then M else N)

with 0 <t <ml0and 0 <3< nl

The maximum operation keeps the value of Tz[f][j] positive or null; the effect of this
operation is to promote positive scores vis-a-vis negative scores: a negative score indicates
no similarity and is not an interesting information. The scores which are memorized in
Tx[i][j] and which are greater than the threshold value represent the areas at SO(i) and
S1(j) where similarities occur. Two similar segments of length k are detected between a local
maximuin score S(¢,7) located at T«[¢][7] and the first zero score located at Tz[i — k][] — k].

Figure 2 gives a graphic representation of the computation done on the matrix Tz; dark
lines represent the pieces of diagonals where the score has overstepped the threshold value.
Generally, a first step consists in storing only the diagonal numbers and the maximum score
which has been calculated on these diagonals. The algorithm used is the following :

for (i=1; i<=n0; i++)
for (j=1; j<=n1; j++)
{
D[nO-i+j] = D[n0-i+jl + (if (SO[i]==S1[j]1) ? M : N );
if (D[n0-i+j]1<0)
then D[n0-i+j]=0;
else Smax[n0-i+j]=max(Smax[n0-i+j],D[n0-i+j]);

}

The Smax table memorize the maximum score of the n0 + n1 — 1 diagonals. Only the
diagonals which have a score greater than the threshold value will be then considered to
precisely locate similar segments.



This is the basis of the algorithm used by software such as BLASTN or FASTA for scanning
the database and detecting similar segments. For speeding up the process they do not
performe the computation on simple characters (which correspond to the nucleotides) but
on words of several characters. Since the complexity of the algorithm is mainly determined
by the length of the two sequences, a 8 to 1 compression, for example, will reduce drastically
the computation time; the drawback is that the sensibility will be equally reduced.

The filter we propose performs a character-by-character comparison. The idea is to
hardwire a simpler version of the previous algorithm: instead of computing the maximum
score of a diagonal, we just detect that the score has overstepped a threshold value T. The
algorithm becomes :

for (i=1; i<=n0; i++)
for (j=1; j<=nl; j++)
{
D[no-i+jl = D[no-i+jl + (if (S0[il==S1[j1) ? M : N );
if (D[n0-i+j1<0)
then D[n0-i+j]=0;
else R[n0-i+j] = R[n0-i+j] || (D[n0-i+j] >= T);
}

From the boolean table R one can easily detect the interesting diagonals, compute the
exact score and locate precisely similar segments.

3 Architecture and implementation

A simple dependence analysis of the above nested loop shows that the computation of
each diagonal can be performed in parallel and supported on the systolic linear network
depicted on the figure 3. Each processor is responsible for the computation of one diagonal
score.

The computation done by a processor corresponds to the body of the nested loop:

initialization :
int d = 0;
bool r = false;

systolic cycle :
d = (cO==c1) 2 (d + M) : (d + N);
d = max (4,0);
r=r || (@>=T)

The data (c0,cl) are 2-bit encoded and advance through the register network every
systolic cycle. The architecture of a processor is mainly based on an adder which adds a
positive or a negative value according to the equality or the inequality of the input data.
When the output of the adder oversteps the threshold value T, the flag r is set. When the
output becomes negative, the adder is reset to zero.

The hardware platform we use for validating the filter is the PRL-DEC Perle-1 board
[3] developed by the DEC Paris Research Lab. It is based on the PAM (Programmable
Active Memory) [4] concept: like a RAM memory module, a PAM is attached to the
system bus of a host computer. The processor can write into, and read from the PAM.
Being an active hardware co-processor however, the PAM processes data between write and
read instructions. The specific processing is determined by the content of its configuration
memory.
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Figure 3. architecture principle of the filter

The Perle-1 board is built around a large array of bit-level configurable logic cells sur-
rounded by local RAM banks. The central computational array consists of a 4x4 matrix of
Xilinx XC3090 programmable gate arrays [12]. The host bus interface is a TurboChannel
interface delivering a 100 MBytes/s bandwith.

The complexity of a processor depends on the M, N and T parameters. The higher are
these values, the higher is the quantity of hardware resources required, and the smaller is
the number of processors which can be fitted into a single FPGA component. We choose
arbitrarily to make the design with the lowest possible parameters, thatis: M =1, N = —1
and 12 < T < 15. In that case, the architecture of a processor can be simplified: the adder
is replaced by a counter and the threshold detector by a 4-input AND gate connected to the
adder output.

16 such processors have been implemented into a Xilinx 3090, leading to a total of 256
processors in the Perle-1 board. Actually, we implement only a half-array of the array
shown in the figure 3. The reason is that, in most cases, the size of the sequences are
longer than the size of the array and partitioning is needed. A half-array is better suited
for partitioning than a complete array.

The synopsis of the design implemented on Perle-1 is represented by the figure 4. The
data coming from the host workstation — via a FIFO — are compressed in order to reduce
the host/array bandwith. The pDcP module will uncompress the data.

The result data sent to the workstation are the numbers of the processors for which
an overstep has occurred. The ADR module performs this task. The data are pushed
sequentially to the OUT FIFO as soon as the processors have finished their computation.
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Figure 4. synopsys of the systolic filter implemented on Perle-1

4 Performance

To measure performances, we developed a prototype software, called HScan, in which
the filter has been integrated and acts as a co-processor. This software produces all the
segment pairs, with a score greater than a threshold value, between a DNA query sequence
and a DNA database. HScan works as follows:

read (QS); /* read query sequence */
IbSeqDB = open (DB); /* open data base */
for (i=1;i<=NbSeqDB;i++)
{
Read (DBS); /* read the ith database sequence */

WbDiag = filter(QS,DBS,M,N,T,NumDiag);
for (j=0;j<NbDiag;j++)
{
ComputeSSP(QS,DBS,NumDiag[j],M,N);
}
}

The procedure filter() takes as parameters two DNA sequences (QS and DBS), the
match and mismatch costs (M and N) and the threshold value (T); it produces a list of
diagonals (NumDiag) whose the score has overstepped the threshold value. The procedure
ComputeSSP() computes the real score and locates the similar segment pairs.

The execution time has been compared with the execution time of BLASTN (version
1.4) and FASTA (release 17) running on a SPARC 10 workstation. The parameters of these
softwares have been set to produce the same results (i.e. M = 1 and N = —1) and the
threshold value has been set to the value computed by BLAST.

More precisely, the measures have been done using the UNIX command time. Thus, this
is the total elapsed time, as it can be feel by the user. BLASTN has been called with the
following parameters:

time blastn <database> <query> M=1 N=-1 W=1 top

It specifies that the cost of a match is 1 (M=1), the cost of a mismatch is -1 (N=-1), the size of
a word is one (W=1), i.e. the comparison is done character by character, and that the search
is restricted to the positive strand of the sequences (top parameter). Setting the parameter
W to 1 ensures a more sensitive search and, consequently, is more time consuming. The
result is a list of significant similar segment pairs.
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Figure 5. speed up between HScan which integrated the systolic filter and the soft-
wares BLASTN and FASTA running on a SPARC-10 workstation

FASTA has been called with the following parameters:
time fasta -s <matrix> -b 50 -d O <query> <database> 1

It specifies that the cost of a match and the cost of a mismatch are taken from a substitution
table (-s <matrix>), that the result consists in the 50 “best” sequences which contains the
“best” similar segment pairs (-b 50) and that the size of a word is one (last parameter =
1). As FASTA cannot select only similar segment pairs which have a score greater than a
threshold value, we ask for the 50 “best” sequences to be outputed.

The diagram of the figure 5 shows the speed-up compare to BLASTN and FASTA for
different lengths of the query sequence. It must be point out that the longer the query
sequence, the better is the speed-up. This is particularly interesting since the size of
DNA sequences becomes larger due to advanced techniques in molecular cloning and DNA
sequencing techniques.

We measure also the speed-up obtained with different sizes of the filter and for different
lengths of the query sequence as shown on the figure 6. We took as a reference the execution
time of HScan with a 32-cell filter for 5 query sequences of length 20, 100, 300, 1000 and
8000. Then we determined the execution times of HScan with a 64, 128, 192 and 256 cell
filter.

For short query sequences a filter larger than 128 cells does not provide important speed-
up. On the other hand, for long query sequences, a larger filter will provide better perfor-
mance. This last point must also be considered for future applications where comparisons
of complete genomes are envisaged. In that case, the size of the query sequence represents
several tens or hundreds of millions of nucleotides (the human genome has about 3.3 billions
nucleotides).
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Figure 6. speed-up obtained with different sizes of the filter. The reference is the
execution time of HScan with a 32 cell filter

5 Design methodology

If the systolic filter provides an attractive solution for the execution-time /sensibility
tradeoff, it appears also as a rich investigation support for experimenting the design imple-
mentation of FPGA prototype. The approach we test uses a software environment based on
a pivot language, the C-stolic language, [10] which is a tool we developped to parallelize
systolic algorithms. The design steps of the filter can be sumarized as follows:

1. profiling of existing software to locate the time consumming part;

2. substituing this part by a C-stolic procedure which parallelizes the computation de-
scribed in section 2;

3. validating this new version by intensive simulations on real data set;

4. generating the hardware architecture for the FPGA Perle-1 board from the C-stolic
description.

5. measuring the performance: if improvements are possiblem goto 2.
Step 1

Step 1 show up that more than 98 % of the execution time was spent in the detection of
similar segments when maximal sensitivity is asked. As mentionned earlier, it consists in
a nested loop whose the computation complexity is directly proportionnal to the sequence
length. This analysis does not required specific tools and has been done using available
profilers.



Step 2

This step consists in writing a C-stolic procedure which parallelizes the detection of sim-
ilar segments on a systolic structure. C-stolic is a systolic programming language which
simplifies the programmer’s task by making explicit the data-flow of systolic algorithms,
and by exposing the data delivery mechanism. The language captures the essential features
of systolic machines in a simple C-like programming model; the C-stolic language principle
may be rapidely understood by the two main following extensions:

data structures: the C language storage classes are extended to make the difference be-
tween scalar variables and variables located on the systolic array. Hence, a new storage
class specifier, the systolic class, is defined to reserve variables on each processor and to
control the set of operations which are allowed on these objects.

communications: News operators are introduced to match the hardware architecture and
to express the tight coupling between neighboring cells. The programming model assumes a
SIMD execution mode and synchronous communications. Correct use of this model implies
that the emission of a value by a processor in one direction is followed by the reception of
the data sent by the neighboring processor located on the opposite direction. The global
effect of the these operators is a shift of the network variables, which reflect the data-flow
characteristics of systolic algorithms.

As an example, the C-stolic procedure for detecting the similar segments on a linear
systolic array may be expressed as follows:

1: SimSegDetect(S0,S1,10,11,Res)

2: char *S0;

3: char *S1;

4: int Nb;

5: int R[NB_PROC];

6: {

7: int i,j,k;

8: systolic int c0, ci1, tc0, d, r, tmp;

9: r=0; d=0;

10: for (i=0; i<(max(10,11)+NB_PROC); i++) {
11: cl => c1 : S1[il;

12: tmp = cO; c0 => tc0 : SO0[il; tcO0 = tmp;
13: d = (cO ==c¢1) 2 d + MATCH : d — MISMATCH;
14: d=(d< 0)7?70 1 d;

15: r =r || (d>= THRESHOLD );

16: }

17: j=0;

18: for (i=0; i<NB_PROC; i++) {

19: r : k =<r ;
20: if (k==1) Res[j++]=1;
21: }
22:  Res[jl=-1;
23: }

The procedure takes, as parameters, two DNA sequence (and their lengths) and computes
a table (Res) which memorizes the number of the diagonales where similar segments has
been detected. Line 8 declares six systolic variables which represente the internal processor
variables.



Line 11 expresses, with a condensed syntax (operator =>), a left to right communication:
it means that processor P; send the character c1 to P;;; and receives (on the same chanel)
another character from P;_q; it indicates also that the leftmost processor of the systolic
array get a new character from the sequence S1. The following line (line 12) simulates a
two register stage connection between processors.

The last loop (line 18 to 21) collects the results and stores them into the table Res. Line
19 is a right to left transfer (operator =<) for outputing the r value computed on each
processor. the variable k, which is a scalar variable, is assigned on each systolic cycle by
the leftmost processor;

Step 3

Once the C-stolic procedure has been substituated to the time consumming part of the
code, simulation had to be performed for testing whether the parallelization was correct
or not. In the present case, we had to decide if the results produced by the systolic filter,
and then refined by the host computer, were valid compared to those produced by existing
software. This can be achieved only on real data (biological data bases) and requires
expensive simulation ressources.

The C-stolic compiler has been designed to generate code for different parallel machines.
More precisely, it works as follows:

1. from the C-stolic code, it separates the parallel operations (systolic computation) from
the scalar ones (I/O management);

2. a C program is generated for each process with communication and synchronization
operations;

3. a compilation is done separately on each C program with the native compiler of the
taget parallel machine.

Thus, the simulation can be performed on parallel machines leading both to a short
execution time and the validation of the algorithm. Presently, code for the MasPar [8], the
iPSC/2 [6], the iWarp [11] [7] and the ArMen machine may be generated.

Step 4

The design of the filter architecture has been guided by the code produced by C-stolic
compiler since it separates clearly the computation done on each systolic cycle and the
computation performed outside the network, i.e. the way the data had to be send to or
receive from the network. These two files have been used as a starting point for generating
the complete architecture of the filter.

The transcription into hardware has been done manually since no tools have been devel-
opped to fill this gap. The C-stolic description facilitates this task but does not provide a
zero-fault design methodology. In spite of using the programming tools provided with the
Perle-1 board, this task can be assimilated to the writing of assembly code: the test may
be very tedious and take a very long time.

Step 5
This final step has the charge of deciding if the architecture which has been designed is

satisfying. It must test if maximal performances are reached and, more precisely, if a good
load balancing between the host and the hardware structure is achieved.
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Actually, this step may confirm the initial intuition or, on the other hand, detect un-
suspected misfunctionning. As an example, the first architecture filter we have in mind
was more sophisticated: we planed to design a systolic network capables of computing the
maximum score of all the diagonals and to give, as result to the host station, the definitif
scores.

This design was completely unbalanced: the host station was idled most of the time
since the systolic filter had the charge of doing the complete computation. Further more,
the cell complexity was leading to implement a small network, thus an important overhead
calculation due to partitionning.

The final version is much more well balanced in the sens that the host station partici-
pates actively to the filter computation and allows to have a larger network. The overall
performance is then better.

This design methodology is typically a co-design approach. Presently, it suffers of the non
automatization of step 4 which implies a relatively long design cycle. Ongoing researches
focuss on this aspect: they aims at producing automatically an hardware description, from
C-stolic, for rapid systolic co-processor prototyping.

6 Conclusion

DNA similarity search is an computation intensive-task which may take a few hours on
standard workstations when using common softwares parametrized for high sensitivity. We
have proposed a systolic filter which reduces the execution time by detecting potential areas
where similarities may occur.

An implementation of a 256 cell filter on a FPGA prototype board has shown that this
mechanisin can boost the performances of standard workstations by a factor ranging from
50 to 400 according to the length of the query sequence.

Further work includes implementation of more complex cells allowing parametrized match
and mismatch costs; the current +1 and -1 values may not be suited to biological reality. As
an example the BLAST default parameters are +5 and -4 and the FASTA default parameters
are +4 and -3. Consequently, the cell adder and the threshold detector will be larger, and
fewer cells will be fit onto a single FPGA component.

16 x 3090 XILINX FPGAs have been used to implement a 256 cell filter. The use of update
technology (the XC4000 logic cell array family, for example) should decrease the numbers of
components and provide the ability to design a small board which could easily be plugged
into the extension slots of standard machines.

Another implementation approach is to fit the filter into an Asic dedicated to the DNA
similarity search. We are currently designing such a chip: the first investigations show that
a 256-cell filter can be integrated on a reasonable silicon area and would provide a low cost
hardware accelerator. Furthermore, the systolic nature of the filter simplifies the design of
a cascadable chip for larger filters.

Beyond the work realized for this specific application, we propose a design methodology
for automating the implementation of systolic arrays: the algorithm is first parallelized
using the C-stolic language, it can be then executed on parallel machines for intensive
simulations, and finally synthetized for FPGA hardware platform. The design loop needs to
be improve, especially for shortening the synthesis step which is still too long because of
the human intervention. Our current efforts address mainly this aspect of the work.
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