Computing Goldbach partitions using
pseudo-random bit generator operators on a
FPGA systolic array

Dominique LAVENIER!, Yannick SAOUTER?

! IRISA, Campus de Beaulieu, 35042 Rennes, France
lavenier@irisa.fr
2 IRIT, 118 route de Narbonne, 31062 Toulouse, France

saouter@Qirit.fr

Abstract. Calculating the binary Goldbach partitions for the first 128 x
105 numbers represents weeks of computation with the fastest micro-
processors. This paper describes an FPGA systolic implementation for
reducing the execution time. High clock frequency is achieved using op-
erators based on pseudo-random bit generator. Experiments carried both
on the R10000 processor and on the FPGA PeRLe-1 board are reported.

1 Introduction

In 1742 Goldbach claimed the following conjecture: “Every even integer greater
than 3 is the sum of two prime numbers”. This conjecture is known as the
binary Goldbach comjecture. Today, it has been verified till the bound 4 x 10
and partially near various powers of ten up to 103%° [3]. But the ezact number
of binary partitions has only been investigated up to 350000 [1], because of high
computation cost.

Such computations are useful for estimating the reliability of probabilistic
models and testing their theoretical background. Historically, three models for
the number of partitions have been proposed by Hardy and Littlewood, Brun,
and Selmer. These three models are compared in [5] together with the values
obtained from our FPGA implementation.

The solution we propose for speeding up the computation combines two tech-
nics: parallelization and customization.

— the parallelization allows to compute simultaneously N consecutive binary
Goldbach partitions. It is implemented on a linear systolic array. Such reg-
ular arrays map well onto FPGAs: they are both made of locally intercon-
nected regular elements. Furthermore, synchronous designs can reach very
high computation speed.

— the customization maps into hardware a function which requires the use of
several instructions on a sequential machine. Particularities of the function
can be extracted to make the best use of hardware resources. In our case, a
fast implementation has been achieved with arithmetic operators built with
pseudo-random number bit generators and integer modular representation.

The next section introduces the binary Goldbach partition enumeration prob-
lem and section 3 shows the parallelization on a linear systolic array. Section 4
details the FPGA implementation and focuses on the pseudo-random bit gen-
erator operators. Section 5 compares the experimentations we have done with
the R10000 processor and the PeRLe-1 board. Section 6 concludes with some
perspectives.

2 Computing binary Goldbach partitions

Computing one binary Goldbach partition consists of counting, for an even
number K (K > 4), all the possible ordered pairs such that K = p; + ps where
p1 and py are two prime numbers. For instance, the binary Goldbach partition
of 22 (denoted by G2(22)) is 5 since there are five possibilities of getting 22 by
summing two prime numbers (3+19, 5+17, 11411, 1745, 19+3).

Computing the binary Goldbach partitions of an even number K may be
expressed by the following C function:

Mgorithm 1: int Goldbach_1(K) int K; {
int G=0; int i=1;
while (i<K) {
if (prime(i) && prime(K-i)) G=G+1;
i=i+2;
}
return(G) ;

}

The function Goldbach_1(K) returns Gy(K). prime(x) is a function which
returns true if x is a prime number and false otherwise. The complexity of this
algorithm is equal to the numbers of times the loop is executed, that is: K/2
One may note the symmetry of the calculation for i < K/2 and i > K/2, leading
to an optimized function:

Algorithm 2: int Goldbach_2(K) int K; {

int G=0; int i=K;

while (i<K/2) {
if (prime(i) && prime(K-i)) G=G+1;
i=i+2;

}

G=G*2;

if (prime(K/2)) G=G+1;

return (G);

}

Since the case i=K/2 is not considered when executing Goldbach_1(K/2), it
is added to the body of the Goldbach_2 function. The complexity is then lowered
to K/4.

Now, the problem of computing N consecutive binary partitions can be stated
as the calculation of N partitions in the interval [P .. P+2N-2]. The following
C function stores the N results in the array G such as G[n]=Gy(P + 2n).

Algorithm 3: Goldbach_3(P,N,G) int P, N, *G; {

int K,n;

n=0;

for (K=P; K<P+2xN; K=K+2) {
G[n]=GoldBach_2(X);
n=n+1;

}

}

For P>>»N (the general case) the complexity of algorithm 3, denoted by
Gseq(P,N) is equal to N x P/4.

3 Parallelization

The computation of N consecutive binary Goldbach partitions can be paral-
lelized on a linear systolic array of N processors as depicted by the figure 1.
Each cell is responsible for the calculation of one binary Goldbach partition:
The leftmost cell computes G (P + 2N — 2) and the rightmost cell G2(P).

The array is supplied with two boolean vectors: V1 and V2. The vector V2
crosses the array at twice the speed of V1. The boolean vectors are formed as
follows:

V1i[i] = prime(2i-1) 0 <=1i< (P+2N-2)/2
V2[i] = prime (P+2N-2i-3) (P+2N-2)/2 <= 1i < (P+2N-2)/2 + N-1

A cell computing G2 (k) receives two boolean values: prime (x1) and prime (x2)
such that k = z1 +z2. When prime(x1) and prime(x2) are both true, a counter
(G) is incremented by 1. At the end of the computation each counter holds the
value of one binary Goldbach partition.

Performing the calculation of N consecutive binary partitions over the in-
terval [P,P+2N-2] requires, for P > N, approximatively P/2 systolic steps
(denoted by Gsys(P,N)). The speed-up compared with the sequential imple-
mentation, is thus given by:

Gseq(P,N)
Gsys (Pa N) (Ssys B

S = (1)

0seq is the time for executing one iteration of the loop of algorithm 1. §ys is
the time of one systolic cycle. From the above equation it can easily be seen that
an efficient systolic implementation will aim to both increase N and to reduce
0seq- These are the two sources of increased performance.

g
4
N
¢ 95913
E EEEEE G(P+2N-2) G(P)
& & 8 8 & &
0 001111 —= D—>’—'—>D—>’—'—>D—>’—'_>b_>
1 00100 —>=
g SR
z 2Z2%z%2
= NNNNN
5 Tddadd
L3 vw
A
= 8 &8 8 &
o

Fig. 1. Linear systolic array for computing N consecutive binary Goldbach partitions.
It is composed of N cells, each cell computing one Goldbach partition. The array is
supplied with two boolean vectors. The calculation perform by a cell consists simply
in incrementing a counter if both inputs of the cell are true.

4 FPGA implementation

This section explains how the architecture of the systolic array has been tailored
for the FPGA XC3000 Xilinx family. The three next sub-sections describe re-
spectively the time optimization (how to get a high clock frequency), the space
optimization (how to map a cell in a minimum of hardware), and the unloading
of the results.

4.1 Time optimization

The clock frequency of a cell — and hence, the clock frequency of the array — is
mainly determined by the speed of the counter. This depends of the number K
for which G2(K) is computed. For example, finding the partition for numbers
around 10® requires a 27-bit counter. Here, a ripple carry adder is too slow for
achieving good speed performance, while a more sophisticated architecture, such
as a carry save adder, requires too much space to reach a reasonable size array.

Instead of implementing a conventional counter, we use a mechanism which
uses two main techniques: Pseudo-random bit generators and modular repre-
sentation. The advantage is that no carry propagation occurs, allowing high
frequency clock. On the other hand, the numbers are not in their natural repre-
sentation and need to be post-processed before interpretation.

We use pseudo-random bit generator based on the following algorithm [2]:

Algorithm 4: counter = 0;
while (true) {

x = MSB(counter); /* MSB */
counter = counter << 1; /* shift left */
if (x==0) counter = counter ~ key;
}

With a suitable key value, the successive values of the data can have a period
long enough to be used as a counter. But interpreting the value of a W-bit counter
based on this technique is not obvious: A lookup table of 2" entries is required,
which is unreasonable for the values of W we are considering (W>25). On the
other hand, retrieving natural representation by post-processing (in software)
soft is too slow.

The difficulty can be surmounted by using two counters and using modular
representation of integers: let p and ¢ two numbers relatively prime to each
other such that M < p.¢g. Then any number % in the interval [1..M] is uniquely
represented by the pair (k mod p, k mod q).

The conversion from the pair representation to the plain integer representa-
tion is based on the following theorem:

Theorem 1:

Let p and q two integers relatively prime to each other. Let u and v be such
that u.p —v.qg = 1. A solution to the set of equation:

{ k = ny mod(p)
k = ny mod(q)

is given by:

k=mn1 + (ny —nq).u mod(p.q)

In other words, given the pair (n;,ns), the post-processing task for computing
k consists simply of a modular multiplication which actually represents a small
part of the overall computation. More details can be found in [5].

As an example, the hardware implementation of a 9-bit counter based on two
pseudo-random bit generators and modular integer representation is shown on
the figure 2. It is composed of two separate counters: A 4-bit counter and a 5
bit counter. According to Algorithm 4, the F; functions implement the pseudo-
random bit generator as follows:

F; = inc.(T.(k; ® ¢ci—1) + m.ci—1) + inc.c; (2)

inc is true if the two inputs of the cell are true. x is the most significant bit
of the counter. ¢; and ¢;_; are the current state of respectively the i** and the
i-1*% bits of the counter. +,. and @ stand respectively for logic OR, logic AND
and logic exclusive OR boolean functions.

In such a counter, there is no carry propagation. The clock frequency is
dictated by the computation time of one elementary 5-input F; function.

Fig. 2. Systolic cell: two pseudo-random bit generators of respectively 5 and 4 bit wide
are used to form a 9-bit counter. The two generators are concurrently activated when
input x1 and x2 are both true.

4.2 Space optimization

The goal is to fit a maximum of cells in a FPGA XC3000 Xilinx family compo-
nent. Such components contain a matrix of CLBs, each CLB containing two 1-bit
registers and either two 4-input boolean functions or one and 5-input boolean
function.

If W is the width of the counter, a direct implementation of a cell requires W
x 5-input functions (counter), one 2-input function (AND gate) and 3 x 1-bit
registers, that is (W+2) CLBs (the 3 registers and the AND function fit into 2
CLBs). Note that this is an optimistic estimation since it does not consider the
hardware for reading back the results.

One may notice that the counter contains two keys which remain stable
during the whole computation. It is then possible to encode these keys and
provide simpler F; functions depending of the bit state k;.

From equation 2, if k; is equal to zero then:

FO0; = inc.c;_1 + inc.c;
On the same way, if k; is equal to one, F; becomes:
F1; = inc.(T.¢;_1 + x.ci_1) + inc.c;
In this scheme, a counter is composed of two types of elementary functions:
F0; or F1;, according to the key. From a practical point of view, one CLB can

now contain two F0; or F'1; functions (which are respectively 3-input and 4
input functions), lowering a cell to (W/2 + 2) CLBs.

4.3 Unloading the results

The mechanism implemented for collecting the results (the values held by the
counter) exploits the shift capability of the counter. Each F0; and F'1; function
is extended with a read-back input which acts as a switch:

Fig. 3. Read-back mechanism: the shift capability of the counter is used to form a long
shift register for outputing data serially.

F0; = readback.c;_; + readback.(inc.c;_; + inc.c;)

F1; = readback.c;_; + readback.(inc.(T.G;_1 + z.¢i_1) + inc.c;)

Thus, reading back the results consists of connecting all the counters in a
long shift register and outputing data serially. This is achieved simply as shown
by the figure 3. This mechanism has the main advantage of requiring a very little
extra hardware without affecting the clock frequency.

Note that the F'1g function must be different: In the normal mode the shift
register input is zero, and in the read-back mode its input is the most significant
bit of the previous counter. Then the F'1¢ function is:

F1y = readback.in + readback.(inc.T + inc.c;)

The F0; function is now a 4-input function, while the F'1; function is a 5-input
function. Consequently, the number of CLBs to fit a complete cell depends on the
key since a CLB cannot simultaneously house two 5-input functions. Fortunately,
the keys contain a small number of "1’s", allowing hardware resources to be
greatly minimized.

5 Experiments

A 256 cell linear systolic array has been successfully implemented on the PeRLe-
1 board [4]. This board houses a 4 x 4 matrix of Xilinx XC3090 and is connected
through a Turbo Channel interface to a 5000/240 Dec Station.

The counter, which is the critical point in terms of hardware resources, is
27-bit wide. It is split into two counters of 13-bit and 14-bit wide which require
respectively a key set to 9 and 7. This configuration allows us to map 16 cells into
a single Xilinx XC3090 component. The entire systolic array is then composed
of 256 cells running at 30 MHz.

In addition to the systolic array, an interface composed of a small automa-
ton, coupled with a serializer /deserializer mechanism has been implemented for
managing the I/O connection with the Dec station. The host alternatively sends
two sub-vectors of 16 boolean values corresponding to the two data inputs of
the array. This compression mechanism avoids exceeding the Turbo Channel
bandwidth.

The computation of the binary Goldbach partitions up to 128 x 108 was
performed in 220 hours (9.2 days). The 64 first million binary Goldbach parti-
tions are now available for comparing the three basic probabilistic methods. This
mathematical study is beyond the scope of this paper and is not addressed here.
Readers Interested by the estimation done on the reliability of the three proba-
bilistic models mentioned in the introduction (Hardy and Littlewood, Brun, and
Selmer) can refer to [5].

In order to evaluate the speed-up of the hardware approach, two programmable
versions have been tested on a R10000 processor. We used one node of the Power
Challenge Array of the Charles Hermite Center, Nancy, France. This supercom-
puter is composed of 40 R10000 processors scheduled at 195 MHz and sharing a
common memory of 1.5 Gbytes. Experiments were performed for low values and
extrapolated to 128 x 10% with respect to the complexity of the algorithms.

The first algorithm implemented is the naive one, that is, the algorithm pre-
sented in section 2 (complexity: O(N?), where N is the upper value for which
the Goldbach partitions are computed). The second one has a lower complex-
ity: For any pair of prime numbers below N, it computes the sum and adds
one in the corresponding entry of an array containing the N/2 partitions. The
prime number theorem states that the number of prime numbers below N is
approximatively equal to N/log(NN). Consequently the complexity of the second
algorithm is raised to O((N/log(N))?). Note that this algorithm requires an in-
teger table of N/2 entries. The following table summarizes the execution time
for the naive algorithm, the optimal algorithm and the systolic algorithm.

naive optimal systolic

N algorithm algorithm algorithm
R10000 R10000 PeRLe-1

108 1:58:59 11:25 2:00

2 x 106 7:50:47 1:11:26 5:30

3 x 108 2:53:01 10:35

4 x 10° 4:37:22 17:10

5 x 108 5:42:05 25:30
128 x 108 32500 hours 2928 hours 220 hours
(3.7 years) (4 months) (9.2 days)

The last row — for the naive and optimal algorithms only — is an estimation
of the execution time calculated as follows:

naive algorithm: t,45. = 7.2 x 1072 x N2

optimal algorithm: t,psima = 2.3 x 1077 x (N/log(N))?

The two constants have been determined from the first measures. The systolic
column reports the exact time.

One may have noticed that the comparison between the hardware and soft-
ware doesn’t rely on equivalent technology. The PeRLe-1 board is far from using
up-to-date FPGA components compared with the R10000 microprocessor. The
PeRLe-1 matrix (16 x XC3090 chips made of 16x20 CLB matrix) contains 10240
4-input boolean functions. This is approximatively the capacity of a single Xil-
inx XC40125XV component (10982 4-input look-up table)[6]. In other words,
an up-to-date board will be able to house a much larger systolic array (4096
cells) which will certainly be clocked with a higher frequency. In that case, the
execution time would be reduced to a few hours.

6 Conclusion and Perspectives

As in many other specific applications, the FPGA based co-processor approach
has demonstrated its efficiency for enumerating the binary Goldbach partitions.
In the present case, the execution time has been reduced from months to days.

Of course, such computation could have been performed on a parallel ma-
chine, or on a network of workstations. This is technically feasible. The drawback
is just to find such computing resources, i.e. a parallel machine available for sev-
eral tens of days, exclusively for that specific computation. Designing an ASIC
is another solution which is no longer valid: once results have been obtained, the
chip become useless. The FPGA technology appears as the right alternative for a
domain of research which requires both intensive computation and one-time-use
architecture.

Other than the architecture we proposed for enumerating Goldbach parti-
tions, the systolic scheme can be applied to many other similar problems such
as, for example, the test of the reliability of Schinzel’s conjecture about pairs of
prime numbers, or to verify the Hooley’s conjecture on the sums of exact powers.
Any of these applications would lead to very similar architectures, but operat-
ing on different bit-streams. Similarly, the specialization of operators based on
pseudo-random bit generators can address other areas for optimizing the clock
frequency and reducing the cost of certain circuits such as the Brent’s polynomial
greatest divider, the Huffman’s systolic encoder, etc.

Short term perspectives of this work are concerned with automatic tools
for implementing regular arrays onto FPGA. A a matter of fact, many time-
consuming applications can be parallelized on a regular array. Generally, the crit-
ical section of code is a nested loop from which a parallel hardware co-processor
can be synthesized. Being able to map onto a FPGA board an HDL description
of a regular architecture, together with the host/co-processor communication in-
terface will constitute a real gain of time and effort. We are currently developing
such tools.

References

1. C.E. Bohman, J. Froberg. Numerical results on the Goldbach conjecture. BIT 15
(1975)

2. D. Knuth. The Art of Computer Programming: semi-numerical algorithms, Addison-
Wesley (1969).

3. J-M. Deshouillers, Y. Saouter, H.J.J. te Riele. New experimental results concerning
the Goldbach conjecture. Proc. of the Annual Number Theory Symposium, Port-
land, Oregon, USA, 1998.

4. J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, P. Boucard. Programmable
Active Memories: Reconfigurable Systems Come of Age, IEEE Transactions on VLSI
Systems, Vol. 4 No. 1 (1996) 56-69

5. D. Lavenier, Y. Saouter. A Systolic Array for Computing Binary Goldbach Parti-
tions. IRISA report 1174 (1998)

6. Xilinx Products, XC4000XV family.
http//www.xilinx.com/products/xc4000xv.htm

