Loop Parallelization on a Reconfigurable Coprocessor

Erwan Fabiani, Dominique Lavenier, Laurent Perraudeau
IRISA
Campus universitaire de Beaulieu, Rennes, France
(efabiani,lavenier,perraude)@irisa.fr

Abstract— The compilation of loops onto reconfigurable
hardware is motivated mainly by two observations: the con-
tinuous growth of chip density, which will lead to new trends
in micro-processor architecture, and the fact that time-
critical parts of many applications are nested loops. This
paper presents a compilation framework based on the idea
that future microprocessors will have large built in recon-
figurable area on which time-consuming loops will be paral-
lelized as dedicated coprocessors made of regular arrays of
identical hardwired processors.

I. INTRODUCTION

In the next few years, chips will contain hundreds of
millions of transistors: recently, IBM announced the devel-
opment of a new manufacturing process, called CMOS 7S
technology which uses copper instead of aluminum, and
expects in the very near future to pack 150 to 200 mil-
lion transistors on a single chip; Intel, AMD and Motorola
consortium created to develop the extreme ultraviolet tech-
nology forecasts one billion transistors in the early years of
the next century.

This transistor explosion raises the following question:
“What are we going to do with chips containing a billion
transistors ?” , or in other words: “How will microprocessor
architectures make the best use of these riches?”. Burger
and Goodman [3] draw the trends of processor architecture
evolution from advanced superscalar architectures, which
scale up from current designs to issue 16 or 32 instruc-
tions per cycle, to RAW machines (a MIT project) which
seeks to “eliminate the instruction set as a binding con-
tract between software and hardware”. Such an architec-
ture, without completely abandoning instruction sequenc-
ing, keeps a large place for reconfigurable hardware for tai-
loring specific bit or byte-level computation in a more pow-
erful way than those supplied, for example, by MMX-like
instruction sets. Undoubtedly, the next processor gener-
ations, thanks to the high transistor density, will include
reconfigurable hardware areas dedicated to specific treat-
ments from which parallelism and customization can be ef-
ficiently exploited. National Semiconductor’s NAPA-1000
[2] or Motorola CORE+ [1] processors are both examples
of such forerunner devices.

From a compiling point of view, we may wonder, first,
about the portions of code which can benefit from these
reconfigurable areas, and, second, how to derive custom
hardware from high level programming languages.

It is well known that in many applications the critical
time is spent in loops. Consequently, we should concen-
trate on these regions for speeding up computation, espe-
cially by extracting parallelism. Much research has already

been done for parallelizing loops on general purpose paral-
lel machines, and manually designed reconfigurable hard-
ware implementations have demonstrated their efficiency.
The success comes both from (1) the implementation of
parallel loops on processor arrays which share, in common
with the reconfigurable philosophy, regularity and locality,
and (2) from the hardware optimization of the some inner
loops having bit-level operations like masking, shifting and
non-standard word sizes.

However designing manually optimized reconfigurable
architectures remains a hard and tedious task. Today, it
requires hardware competence, notably the use of VLSI
CAD tools which is still the best way of programming re-
configurable components. From an HDL(Hardware De-
scription Language) description, hardware compilers are
able to generate bitstreams for such devices. But this is
a VLSI-oriented process, which generally takes a very long
time, and consequently becomes inappropriate if one in-
tends to transparently include this approach into a compi-
lation framework.

Because of the type of the architectures derived from
nested loops (regular arrays), the mapping process can be
drastically shortened by exploiting information relative to
topology and regularity: for example, the place-and-route
process can be strongly directed by the array topology, thus
avoiding the simulating annealing placement step which is
generally a very time-consuming task. In addition, crite-
ria traditionally used in hardware compilers for optimiz-
ing reconfigurable resources — and which significantly slow
down the mapping process — may not be, of the most im-
portance here. Of course, high speed and minimal area
must be a constant objective, but in a compiling context,
it is certainly more important to get rapidly (in a few tens
of seconds) a correct implementation providing a signifi-
cant speed-up, than waiting hours for an optimized solution
which can be changed at any time.

The rest of the paper is organized as follows. The next
section briefly presents the overall approach for compiling
loops onto a reconfigurable coprocessor. Section IIT and IV
detail respectively two important steps: the partitioning
and the physical mapping. The last section gives some
conclusions.

II. OVERALL APPROACH

The starting point of our approach is a sequential pro-
gram with nested loops. The goal is to derive automatically
a hardware description of the time-consuming loops, which
will be supported by the reconfigurable hardware, and the
complete hardware/software interface. No assumption is

made on the way the reconfigurable area is linked to the
processor: it can hang directly on the bus memory (as in
the ArMen machine [5], [4]) or be attached through an I/O
bus (as in the PAM engines [13]). We restrict the target
architecture supporting the loop parallelization to a linear
array of processors. The main reason is that more com-
plex topologies, such as a 2D array, generally require very
high data throughput which cannot be sustained by the
processor.

With this architecture in mind, the compilation can be
split into three main steps :

1 - Loop detection and parallelization on systolic
arrays: This step detects time-consuming nested loops for
which one can hope to speed-up the computation through
specialization and parallelism. Detection can be performed
on the basis of static analysis or profiling technics. Once
the interesting loops have been selected, parallelization can
occur. It consists of deriving regular array architectures
(systolic as well as semi-systolic) from loop specifications
or equivalent formal description such as systems of affine
recurrence equations [10] : this model supports a powerful
theory of space-time transformation methods and is now
available for automatic parallelization as well as for deriva-
tion of systolic arrays. At IRISA, a functional language,
ALPHA [7], based on systems of recurrence equations has
been developed and a transformation system is used for ex-
ploring the transformations needed for systematic deriva-
tion of regular arrays.

2 - Partitioning: This step starts with a parallel de-
scription of the loops on a linear array. This can be an
ALPHA program appropriately transformed or any other
description (for instance, a description based on a data-
parallel language). Since the available reconfigurable re-
sources have physical limits and may not support the en-
tire array, transformation of the architecture is required.
It consists in splitting the array into subarray or clustering
group of processors as explain in section III. The autom-
atization of this task belongs still to the research domain
and is not yet solved.

3 - Physical mapping: The last step maps the lin-
ear array on the reconfigurable area. A VLSI oriented
approach is prohibited, due to the long time it requires
to find optimized place and route solution. The key idea
for speeding up the process is based on the two following
points: (1) a definitive placement can be directly issued
from the properties of regularity of the array; (2) a judi-
cious placement implies a fairly short routing step. Prelim-
inary experiments (see section IV) tend to demonstrate the
soundness of these two assumptions: the mapping compu-
tation time is drastically shortened, rendering this method
viable in a compiling approach.

The three steps are currently under investigation using
two main approaches. The first one considers the ALPHA
language which, through systematic transformations, cov-
ers step 1 and step 2. The second one consider a data-
parallel language, C-stolic[11], which requires the paral-
lelization of the loops to be performed by the program-
mer. Partitioning can also be explicitly specified in that

language. The advantage of using C-stolic as an alterna-
tive approach is that steps which are not yet completely
automatically solved can be performed manually, allowing
immediately the test of the back end mapping tools.

ITI. PARTITIONING

This step transforms the parallel description of nested
loops into a structural description. As a direct synthesis
(one iteration producing one processor) could lead to a lin-
ear array with a large number of processors, a partitioning
of the array is required to take care of the reconfigurable
hardware capacity. Thus, the aim is to transform a descrip-
tion of a virtual array of P processors into a parameterized
description of the same array using only K “real” proces-
sors, K being a parameter (K < P).

There are two ways of partitioning: LSGP (Locally Se-
quential, Globally Parallel) and LPGS (Locally Parallel,
Globally Sequential) [8].

O &
iy (8 (@ (8
A ORORIO OO Ob ey
Partitioned "‘ "‘ "
MERCNRE B
- O e Oh = O ks

Fig. 1. The LSGP partitioning method : P =6,K = 3,Q = 2

[] memory

multiplexor

LSGP: the array of P virtual processors is divided in
K groups of Q = [P/K| processors. Each group is im-
plemented in one “real” processor which executes sequen-
tially) iterations. The K processors work in parallel as
a pipeline. As we can see on figure 1, the disadvantage of
this method is the need to transform the description of the
processor by adding a memory and a multiplexor.

wa ([0 (8 (& (B (e (15,

00000

Patitioned -~ (C3 & e ity
Array () () ()

input

™

output

a A @ Zb\ @
Lo |

Fig. 2. The LPGS partitioning method : P =6,K =3,Q =2

LPGS: the array of P virtual processors is divided in

Q@ = [P/K] groups of K processors. Each group is imple-
mented sequentially on the “real” array, as shown on figure
2. With the LPGS method, a processor does not need to
be transformed: only an extra memory outside the array is
required. On the other hand, an array with bidirectional
communications can not be so partitioned.

Partitioning methods are expected to be automated with
formal transformations, which can be implemented using
the ALPHA system. Then, the result (a parameterized
description of the array) can be synthesized by using the
existing transformations. The synthesis produces an RTL
(Register Transfer Level) description in the ALPHARD
language [9] which can be directly used as an entry point
for the physical mapping.

As partitioning is not yet automatic, we may use hand
transformations on a C-stolic description. Currently, to
give a RTL description to the physical mapping step, we
are developing a compiler to transform a C-stolic program
into a HDL (Hardware Description Language) description.

IV. PHYSICAL MAPPING

The last step is the physical mapping of regular arrays
on FPGAs. The implementation of this step is based on
respecting the regularity of regular arrays. We first explain
why we have chosen to respect the regularity of regular
arrays for the physical mapping. We then detail the steps
of this physical mapping. Finally we present preliminary
results which validates our assumptions.

A. Why implement regular arrays regularly?

In order to reduce the time spent in the usual place-
and-route phase, we base the physical mapping step on a
regular placement which relies on the following principles:
« signals which belong to a same processor of the regular
array must be placed in a same region;

« identical processors must be implemented identically;
« neighboring processors of the regular array must be close
on the FPGA circuit.

Our thesis is that a regular placement decreases the phys-
ical mapping time while allowing simpler place-and-route
algorithms: this improves chances to find a routing for com-
plex circuits. First of all, the placement phase will be faster
since it is not calculated globally but simply deduced from
the regular array architecture. In fact, as soon as a proces-
sor placement is found, it is enough to replicate it for other
processors. The time saving for the routing level is linked
to the regular placement. Since the CLBs (Configurable
Logic Blocks) which implement a processor are confined to
a same zone, the number of possible paths between CLBs
is reduced and the router will be able to more easily and
quickly connect the CLBs. Moreover, the router is likely
to find the shortest path between CLBs as well as between
processors.

B. Implementation steps

The physical mapping is globally divided into four steps:
area estimation, placement of the array, placement of the
processors and routing.

1 - Area estimation: This step predicts: (1) what
resources (counted in CLBs, logical gates, LUT (Look Up
Table) or registers) are required for the implementation
of one processor on the targeted FPGA; (2) what are the
minimal dimensions of one processor area.

2 - Placement of the array: This step consists of al-
locating geometric blocks of CLBs for each processor and
specifying relative placement between these blocks. In this
step, we use the principle that neighboring processors in
the regular array must also be neighbors on the FPGA cir-
cuit. Moreover, the zones where to place the first and the
last processor are determined according to the location of
I/0 ports. To satisfy these constraints, segments of the lin-
ear array are folded up, to obtain a snake like form (Fig.
3), which can be mapped to a grid of CLBs. Several crite-

A | B g
V8 B 88 . 8
(I T S -,,,-:,,:,?T\Gthproc.
| | B,

R N L LY
g\% 8 88 8 8 g e\
11th proc. 15th proc.

Fig. 3. Mapping of a regular array of 15 processors (4 CLBs per
processor) following a snake like form

ria can guide the array placement and select the solutions:
maximum number of processors implemented, maximum
area allocated to the processors, maximum space between
neighbors processors or minimum area used for the array.
When this step is complete, dimensions of the area allo-
cated to processors and relative placement of these proces-
sors are known.

3 - Processor placement: Each processor is placed
respecting the processor area dimensions found in the pre-
vious step. As we assume that the structure of one proces-
sor is described by an assembly of basic operators, several
placement methods could be used. The two extreme meth-
ods are:

« copying the processor structure onto the FPGA circuit,
i.e. having a placed description for each operator of the
processor and placing them in the zone allowed to one pro-
cessor, respecting the data path between those operators.
This method tends to minimize the use of routing resources,
but the lose of area may be too high in the case of coarse
grain FPGA circuits;

« translating the processor description in terms of boolean
equations, to logically optimize those and to map and place
them into the area allowed to the processor (method used
for our experimentations). In this case we obtain the min-
imal area for one processor. But this method requires high
routing resources and may take too much time if the indi-
vidual processors are too large.

The first method would better fit for fine grain FPGA cir-
cuits (like XC6200 [16]) whereas the second one is more
adapted to coarse grain FPGA circuits (like XC4000 [15]).
The best method, situated between these two extremes,
should be determined according to the granularity of the
targeted FPGA, the complexity of the processors and the
degree of utilization of standard tools.

4 - Routing: This last step achieves the routing of the
whole design. Here standard tools are making the routing.
The regular placement found in the previous step induces
a short time routing phase.

C. Ezperimentations

Some experimentations have been conducted for confirm-
ing our assumptions on the advantages of regular place-
ment. The targeted FPGA family for those experimenta-
tions is the Xilinx XC4000 family. The placer-router used
is Xilinx PPR[14]. To specify the regular placement we use
the PamDC language[12]. Two regular circuits were tested:
o a Lyon’s bit-serial multiplier [6] which uses integers
whose word-length (in bits) is equal to the number of pro-
cessors of the array;

« a convolution array whose multiplier is replaced by a par-
allel AND operation; this circuit has been tested for two
word-lengths: 8 and 16 bits.

On the FPGA circuit the arrays are placed following a
snake like form. For the internal placement (and parti-
tioning) of the processor we used a simple method: this is
done using PPR with constraints permitting to obtain the
minimal area (in CLBs) for one processor. Then the par-
titioning and placement found by PPR are recovered, and
following those, the internal description of the processors
is rewritten in PamDC. For our tested circuits, this prelim-
inary use of PPR takes no more than 1 minute. Moreover,
the area occupied by circuits placed with our method is
equal to that of circuits entirely placed by PPR. The mea-
sured mapping time is the execution time (on a 140 MHz
Sun Ultral workstation) of PPR for each circuit. In one
case the circuit is entirely partitioned, placed and routed
by PPR. In the other case, the circuit is pre-placed reg-
ularly and the sole job of PPR consists in routing it. As
one can see (table I), the time savings induced by a reg-
ular placement is significant. Moreover, theoretical clock
frequencies of regularly placed circuits were faster by 8 to
25%. Although these preliminary tests are not generaliz-
able and the internal placement processor method is spe-
cific to coarse grain FPGA, this conforms to the idea that
regular arrays must be placed regularly on FPGA circuits.

V. CONCLUSION

The compilation framework we are currently developing
aims to provide tools for the next generation of micropro-
cessors. We expect that such devices will include a recon-

TABLE I
MAPPING TIME (IN MIN, SEC) OF CIRCUITS IMPLEMENTED ON A
XC4020(784 CLBs), REGULARLY PLACED OR NOT: LYON’S
MULTIPLIER, 8 BITS CONVOLUTION AND 16 BITS CONVOLUTION.

L. regular placement | reduction
circuit
1o | yes | (%)
lyon 24,21 4,25 82
conv8 | 36,37 5,01 86
convl6 | 42,43 11,17 74

figurable zone on which dedicated coprocessors could be
implemented for speeding up time-consuming portion of
code. We believe that the success of such architectures will
greatly depend on the ease and the power of programming
tools, and that, right now, advanced compiling tools have
to be thought out. However, even if this work is guided
towards tomorrow’s architectures, it can be largely applied
to existing architectures which already incorporate recon-
figurable components and for which no high level program-
ming environment is provided.

REFERENCES

[1] http://www.mot.com/sps/hpesd/prod/coldfire/core_fact.html.

[2] http://www.national.com/appinfo/milaero/napal000.

[3] D. Burger and J.R. Goodman. Billion-transistor architecture.

Computer, 30(9):46-50, September 1997.

[4] J.Champeau, L. Le Pape, B. Pottier, S. Rubini, E. Gautrin, and
L. Perraudeau. Flexible parallel fpga-based architecture with
armen. In HICSS’94, Hawai, January 1994.

[5] D. Lavenier, B. Pottier, F. Raimbault, and S. Rubini. Fine
grain parallelism on a MIMD machine using FPGAs. In IEEE
Workshop on FPGAs for Custom Computing Machines, pages
2-8, Napa, CA, USA, April 1993. IEEE Computer Society Press.

[6] R.F.Lyon. Two’s complement pipeline multipliers. IEEE Trans-
actions on Communications, pages 418-425, April 1976.

[7] C.Mauras. Alpha : un langage équationnel pour la conception et
la programmation d’architectures systoliques. PhD thesis, Uni-
versité de Rennes 1, December 1989. A partial english version
can be find at http://www.ee.byu.edu/~wilde/Alpha/.

[8] D.I. Moldovan and J.A.B. Fortes. Partitioning and mapping
algorithms into fixed size systolic arrays. IEEE Transactions on
Computers, 35(1):1-12, January 1986.

[9] P. Le Moénner, L. Perraudeau, S. Rajopadhye, T. Risset, and

P. Quinton. Generating regular arithmetic circuits with alphard.

In Massively Parallel Computing Systems (MPCS’96), Ischia,

Italie, May 1996.

P. Quinton and V. V. Dongen. The mapping of linear recurrence

equations on regular arrays. Journal of VLSI Signal Processing,

1989.

F. Raimbault and D. Lavenier. Relacs for systolic program. In

ASAP’93: International Conference on Application Specific Ar-

ray Processors, Venice, Italy, October 1993.

H. Touati. Pamdc: a c++ library for the simulation and genera-

tion of xilinx fpga designs. Technical report, Digital Equipment

Corporation Systems Research Center, 1997.

J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and

P. Boucard. Programmable Active Memories: Reconfigurable

Systems Come of Age. IEEE Transactions on VLSI Systemes,

4(1), March 1996.

[14] Xilinx. XACT Reference Guide, Vol II: PPR, 1994.

[15] Xilinx. The Programmable Logic Data Book, 1997.

[16] Xilinx. XC6200 Field Programmable Gate Arrays, April 1997.

(11]

(12]

(13]

