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Abstract

This report describes a functional unit able to perform both usual integer operations and
floating-point additions. Basically, the architecture extends the structure of a floating-point
adder, so that hardware is re-used for both operations. The time for reconfiguring this unit
depends on the operations of the instruction flow. On average, the penalty is estimated
as one cycle. This Reconfigurable ALU (R-ALU) uses roughly the same die space as a
floating-point adder.

1 Motivation

Current microprocessor architectures house separated functional units for executing integer
and floating-point operations. Depending on the microarchitecture organization (type and
number of functional units) the Instruction-Level Parallelism (ILP) loss can be significant
due to the mismatch between the instruction stream and the available hardware resources.

In [1] a method for quantifying the frequency of instructions with respect to the limit of
functional unit allocation is developed. The committed instruction sequence are viewed as
a sequential stream of instruction types and the inter-arrival distances between instructions
can be measured and profiled.

A first utilization of this technique is to provide a list of the most frequently occurring
clusters of instructions. For floating-point intensive applications, namely Swim, Waveb and
Su2cor, the list of significant instructions is similar to the integer intensive codes Compress95,



ijpeg, li, and kmeans. These are the "important” instructions for these particular codes. A
reconfigurable unit that provides support for these types of instructions is likely to achieve
performance gain provided the switching penalty is minimal. These instructions are given
in annex.

For all the observed codes, loads and stores occurred with high cluster frequency. This
is intuitive since they are typically necessary for many types of operations. While the
characterization does not consider the influence on performance due to memory latency,
it is certainly the case that improvements in latency or overall memory performance would
certainly impact the overall performance. But in this context, only on-chip performance
is considered without the influence of memory since the goal of a reconfigurable unit is to
improve the service rate of instructions without consideration to memory latency. Loads
and stores will achieve a performance boost from a reconfigurable unit that gives additional
bandwidth to memory address calculation due to the sheer number of loads and stores taking
place.

Integer-add operations also are quite clustered among all the codes. This is expected in
integer-intensive codes, but perhaps the magnitude of their presence in floating-point inten-
sive codes is not so intuitive. Nonetheless, the floating-point codes Swim, Waveb, and Su2cor
each show frequency distributions that outweigh their floating-point add counterparts sig-
nificantly. This shows that a reconfigurable unit providing extra bandwidth to integer-add
operations should provide a performance boost. Also, the penalty incurred by switching
from integer-add to floating-point add resulting in cycle delay could be canceled out by the
gain in integer performance afforded by a reconfigurable unit. In other words, a tradeoff is
possible between switching penalty and integer bandwidth performance gain since the quan-
tity of clustered integer operations is typically two or three times larger than the quantity
of floating-point add operations.

This discussion provides the motivation behind our choices of including and excluding func-
tionality in the defined reconfigurable unit. Particularly, the goal is to provide extended
integer execution bandwidth while maintaining the power provided from reconfiguring as a
floating-point unit.

The rest of this report is organized as follows: section 2 details the R-ALU architecture.
Section 3 discusses some timing considerations. Section 4 deals with the reconfiguration
issue of the R-ALU. Section 5 concludes this report.

2 The R-ALU Architecture

This section presents the architecture of a functional unit which can perform both integer or
floating-point operations. We refer to it as a reconfigurable ALU (R-ALU) since it requires
some delay for switching from integer mode to floating-point mode or from floating-point
mode to integer mode. The idea behind the proposed architecture is to adapt the hardware



A 4 A 4
BARREL SHIFTER

y A
ADIER

A 4 A 4
LOGIC UNIT

Figure 1: 64-bit integer ALU performing addition (subtraction), shift (left and right) and
logic operations

by analyzing the instruction stream and mutating the R-ALU to integer ALU if the integer
operations exceed the floating-point operations or mutating it to a floating-point ALU in
the opposite case.

Based on the profiling results, as explained in the previous section, addition, shift and
logic operations are the most frequent integer operations. At the same time, floating-point
additions represent the major operations in scientific codes. Consequently, the R-ALU is
restricted to those operations and can be reconfigured either as:

e an an integer ALU

in this mode the R-ALU performs 64-bit integer operations: addition (ADD), subtraction
(SUB), shift left (SLL), shift right (SRL) and usual logic operations (OR, AND, XOR, ...).

e a a floating-point ADDER

in this mode, the R-ALU performs double precision IEEE standard 754 floating-point
addition (FP-ADD).

The architecture of the R-ALU is a hybrid between integer and floating-point architec-
tures. Before describing the principle of the architecture, we first review the architecture of
integer and floating-point operators which are currently implemented in the modern micro-
processors. Figures 1 and 2 represent respectively two simplified architectures of integer and
floating-point units.



The integer ALU has three main components: a 64-bit adder, a barrel shifter and a logic
unit. The critical path comes obviously from the 64-bit adder — for example, a 64-bit addition
must be performed in 2ns, if a 500 Mz frequency is expected.

The floating-point adder has a more complex structure. It requires the following (sequential)
steps:

1. align the decimal point of the operand that has the smallest exponent;
2. add the significants;

3. normalize the result;

Roughly, each of these operations can be done in one cycle, leading to the 3 stage pipeline
adder drawn figure 2. The LOP box computes the leading one prediction in parallel to
the addition of the two significants. This is needed to normalize the result. The adder
performs a 54-bit addition. Actually, two additions are done concurrently: the sum of the
two significants and the sum plus one. This is also needed to speed-up the next stage. This
extra operation does not slow down the addition: only an extra carry propagation mechanism
is required. For sake of clarity, the rounding mechanism has not been represented.

From the architectures of these two units, one can observe that both require a large adder
together with right and left shift capabilities.

The architecture of the R-ALU follows the architecture of the floating-point adder. However,
the hardware has been modified for allowing integer operations. The modifications over the
architecture of a floating-point adder are:

e extension of the adder from 54 bits to 64 bits;
e substitution of the 54-bit right shifter by a 64-bit barrel;

e insertion of some programmable switches along the data-path.

Figure 3 shows the architecture of the R-ALU. The circles represent the programmable
switches. The R-ALU takes two operands as inputs, and has two outputs dedicated respec-
tively to integer and floating-point results.

When configured as an integer ALU, the swap unit is disabled (switch RS1a). Hence, the
input of the barrel shifter is B1; it is controlled by the instruction decoder through the
switch RS1b. The two inputs of the adder are respectively connected to A1 and B1 by the
two switches RS2a and RS2b.

When configured as a floating-point adder, the inputs of the adder come from the first stage
of the pipeline. The barrel shifter is controlled by the operations performed on the exponents.
In that scheme, only the 54 least significant bits of both the adder and the barrel are used.
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Figure 2: double precision IEEE 754 floating-point adder
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3 Timing consideration

The first assertion we make is that, whatever the technology used, the 64-bit addition is the
critical path. When using the Carry Lookahead technique, an addition can be performed in
time O(log n), in our case, approximatively equal to 6 X § where ¢ is the switching time of
an elementary gate.

In the R-ALU, the critical path is the carry propagation of the 64-bit adder, plus the propa-
gation time through the programmable switches RS2x on the input operands. The insertion
of only one extra gate on this critical path has an immediate effect: it decreases the fre-
quency by more than 15%. Actually, the delay of the programmable switches is less than an
elementary gate if we consider that the connection has been set previously, that is during
the reconfiguration step. Furthermore, delays induced by the programmable switches can be
compensated by resizing a few MOS transistors, as explain below.

Basically, a programmable switch is designed as follows:

1

o

For example, to make a connection between I1 and O the bit-memory M1 must be set to
one, making the pass-transistor 7’1 saturated and equivalent to a resistance. In that state,
the equivalent electronic diagram of the connection becomes:

-

C is the load capacitance and Rsw is the resistance of the pass-transistor.

The delay (A) is given by:

A =0.7%x (Rsw+ Rd) x C

Rd is the output resistance of the driver.

The delay introduced by the insertion of the switch is thus equal to Rsw x C. The better
way to suppress this delay is to have a stronger driver. This is equivalent to resizing the



MOS transistors of the output stage, and thus reducing the output resistance. Suppose a
new driver with a resistance equal to Rd/2 and a pass-transistor also with a resistance equal
to Rd/2, then the new delay A,., becomes:

Apew = 0.7 % (Rd/2+4 Rd/2) x C =0.7x Rd x C

This delay is equivalent to a connection without a switch.

To summarize, inserting switches along the data-path does not introduce extra delay if one
takes care of resizing correctly the couple (driver/switch). The only effect will be an increase
in the power consumption since the drivers are more powerful.

4 Reconfiguration issue

In the previous section, we assume the switches are stabilized for a maximum frequency.
In other words, switches cannot be set at the beginning of any working cycle: this would
introduce the switching time of the pass-transistor into the critical data-path, and decreasing
the frequency. Hence, the R-ALU configuration must be set before the beginning of any
operation execution.

The number of configurations of the R-ALU being limited to 2, no specific memory hardware
is required. Only one bit is needed for switching from a configuration to another one.
Consequently, the minimum reconfiguration time is one cycle.

One must also wonder about the latency of the R-ALU. In integer mode, the R-ALU latency
is one cycle, in the floating-point mode, the latency is three cycles. This must be taken into
consideration for managing the R-ALU switching.

In the following, we suppose that the reconfiguration of the R-ALU is pipelined: if the
reconfiguration starts at cycle i, then the first stage (switches RS1a and RS1D) is reconfigured
during this cycle and the second stage (switches RS2a and RS2b) is reconfigured during cycle
1+ 1.

Note that the hardware for executing logical operations is independent: it does not con-
tribute to floating-point addition. Thus, no reconfiguration is required for executing a logic
operation.

The next two sub-sections detail the mutation penalty when switching first from integer
to floating-point mode and, second, from floating-point to integer mode. Depending of the
integer instruction flow, the time for reconfiguring the R-ALU varies. In the following,
a floating-point addition is denoted FP-ADD, an integer addition (or subtraction) ADD, a
shift operation SHIFT, and a logical operation LOG. An integer operation is denoted INT (it
represents either an ADD, SHIFT, or LOG operation.



4.1 Switching from integer to floating-point mode

When switching from integer to floating-point mode, two situations might occur:

1. the last integer instruction is a ADD/SUB or a LOGICAL operation.

I nteger Floating-point
INT INT ADD FP-ADD FP-ADD FP-ADD
(i-2) (i-1) (i) (i+1) (i+2) (i+3)
stage #1 rconfiguration
(barrel shifter) FP-ADD(i+1)
stage #2 rconfiguration
ADD FP-ADD(i+1)
(adder)
floating-point o ADDGD
output port
integer INT INT ADD
output port

Since these operations do not use hardware required by the first pipeline stage of a
floating-point addition, this stage can be reconfigured when executing an ADD or a LOG
operation. If such an integer operation is executed during cycle 4, the reconfiguration
process can start at the beginning of cycle 7. This situation does not require an
extra cycle for reconfiguring the R-ALU.

2. the last integer instruction is a shift operation.

I nteger Floating-point
INT SHIFT NOP FP-ADD FP-ADD  FP-ADD
(i-1) @) (i+1) (i+2) (i+3) (i+4)
stage #1 rconfiguration
X SHIFT FP-ADD(i+2)
(barrel shifter)
stage #2 rconfiguration
FP-ADD(i+2)
(adder)
floating-point .
output port FP-ADD(i+2)
INT SHIFT

Since this operation uses the barrel shifter, which is also used in the first step of the
floating-point addition, the reconfiguration cannot overlap with computation. In this
situation, one cycle is lost for reconfiguration purpose.



4.2 Switching from floating-point to integer mode

When switching from floating-point to integer mode, four cases must be considered according
to the next two integer instructions:

1. the next instruction is a logical operation not followed by an addition.

Floating-point I nteger
FP-ADD FP-ADD  LOG ADD INT INT
(i-1) (@) (i+1) (i+2) (i+3) (i+4)
stage #1 reconfiguration
) FP-ADD(i)
(barrel shifter)
stage #2 reconfiguration
FP-ADD(j)
(adder)
floating-point o ADDY
output-port -ADD()
integer LOG ADD INT
output port

Since a logical operation does not use the hardware required by a floating-point oper-
ation, it can immediately follow a floating-point operation. During execution of it first
stage reconfiguration can be accomplished. Note that the results of the logical opera-
tion are available one cycle before the result of a floating-point operation. Remember
that the R-ALU has two output ports, one connected to the integer register file, and
the other to the floating-point register file. This situation does not require an
extra cycle for reconfiguring the R-ALU.

2. the next instruction is a logical operation followed by an addition.

In this case, the integer addition cannot be performed since the adder is used for
executing the floating-point addition. As a matter of fact, if a FP_ADD begins at cycle
1, it uses the adder at cycle i 4+ 1, and the reconfiguration cannot be done before cycle
1+ 2. Thus an integer addition can begin to execute only on the next cycle, that is
cycle ¢ + 3. This situation needs one extra cycle for reconfiguration.



3. the next instruction is a shift operation.

Floating-point I nteger
FP-ADD  FP-ADD SHIFT INT INT
(i-1) 0] (i+1) (i+2) (i+3) (i+4)
reconfiguration
stagg # FP-ADD(i) SHIFT
(barrel shifter)
stage #2 reconfiguration
FP-ADD(i)
(adder)
floating-point ]
output-port FP-ADD()
integer SHIFT INT INT
output port

Since a shift operation uses the barrel shifter which is also used in the first stage
of a floating-point addition, one reconfiguration cycle is needed between the
execution of these two operations.

4. the next instruction is a ADD/SUB operation.

Floating-point I nteger
FP-ADD  FP-ADD ADD INT
(i-1) (i) (i+1) (i+2) (i+3) (i+4)
stage #1 "\ reconfiguration
(barrel shifter) FP-ADD()
stage #2 reconfiguration
FP-ADD(i) ADD

(adder)

floating-point
output port

FP-ADD(i)

integer
output port

ADD

In this situation, the adder is the bottleneck. If the instruction FP-ADD is executed at
cycle 7, then the adder is used at cycle ¢4 1, allowing the second stage to be reconfigured
at cycle i + 2, and instruction ADD to start at cycle ¢ + 3. In this situation, two
cycles are needed for switching from floating-point to integer.



4.3 Average number of cycles dedicated to reconfiguration

The following table summarizes the various situations:

inst 1 inst i+1 | inst i+2 | cycles
int to float | LOG or ADD | FP-ADD | FP-ADD 0
SHIFT FP-ADD | FP-ADD 1
float to int || FP-ADD LOG not ADD 0
FP-ADD LOG ADD 1
FP-ADD SHIFT INT 1
FP-ADD ADD INT 2

The columns inst i, inst i+1 and inst i+2 represent the instruction flow. The R-ALU is
switched between instruction i and instruction i+1. The last column indicates the number
of cycles required for switching the R-ALU.

The average number of cycles dedicated for reconfiguring the R-ALU depends both on the
instruction distribution and on the strategy to determine when to switch from FP-to-INT or
INT-to-FP. If we assume that most of the integer instructions are ADD/SUB instructions,
then the average cycle to reconfigure the R-ALU is equal to one (no cycle for the ADD/FP-
ADD switch, two cycles for the FP-ADD/ADD switch).

5 Conclusion

The hardware cost of the R-ALU is roughly the cost of a floating-point adder. Extending the
adder from 54 bits (current implementation of the IEEE standard 754 for binary floating-
point arithmetic) to 64 bits does not provide a frequency limitation since the integer unit
already perform such operation in one cycle.

The re-programmability is provided by a few programmable switches. The delay introduced
by these devices can be canceled thanks to a clever transistor resizing. The overall effect
will be a small (probably insignificant) increase in power consumption.

The average number of cycles dedicated to reconfigure the R-ALU can roughly be estimated
to one. Due to the pipeline organization of the floating-point adder, the switching from
floating-point to integer needs two cycles, while switching from integer to floating-point does
not require extra cycles.
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6 ANNEX

6.1 Instruction distribution for swim
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6.2 Instruction distribution for wave

Number of instructions
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6.3

it Instruction distribution for su2cor
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6.4 Instruction distribution for compress

Compress95 Frequent Instructions
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6.5 Instruction distribution for ijpeg

Number of instructions
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6.6 Instruction distribution for li
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6.7 Instruction distribution for kmeans
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